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About this Document 

This document has been developed for USAID´s BIOREDD+ Program to provide a spatial 
information on carbon stocks in forests in BioREDD region and along the entire Pacific coastal 
forests of Colombia. The document summarizes the sampling methodology, the forest aboveground 
biomass estimation, and the spatial modeling approach for biomass estimation.  The map is 
accompanied by a spatial uncertainty information to allow for the use of map for other REDD or 
regional projects for conservation and carbon emission mitigation activities.  
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Executive Summary 
This document summarizes the standard operating procedures for the measurements and monitoring of carbon 
stocks and changes to quantify the climate benefits for the USAID BioREDD projects in the Pacific Coast of 
Colombia.  Here, we outline the methodology for measurements to update the carbon emissions before the first 
verification and provide the monitoring approach, data sources, and organization for the entire crediting period. 
The project will monitor all required components according to the VM0006 methodology. In general, all 
components for calculating actual GHG benefits generated by the REDD+ project, or Net anthropogenic Emission 
Reductions (NERs) are included in the monitoring plan: 

Monitoring of deforestation drivers, project activities and emission sources related to REDD+ project activities 
inside and outside of the Project Area.  

Monitoring of degradation drivers, project activities and emission sources related to REDD+ project activities 
inside and outside of the Project Area.  

Monitoring LULC class transitions in the Project Area, Leakage Area and Reference Region  

  

A monitoring report is produced which contains all 
of the information above, and outlines the 
calculations for actual NERs generated. The tools 
in BioREDD MRV system will focus the 
measurements to update the emission factors for 
degraded forests and primary forests by collecting 
new lidar data over these areas. The monitoring 
plan will track down changes of forest to non-
forest, non-forest to forest, forest degradation and 
forest recovery systematically by monitoring LULC 
transitions. The approach will also show how to 
integrate remote sensing data specific for the 
region (ie, Landsat, ALOS-PALSAR, Lidar, etc.) in 
monitoring tools along with repeated lidar flights 
for updates of baseline emission factors to 
calculate annual carbon change, within the required 
statistical error (10% at 95% confidence interval) 
over the project, reference, and leakage areas. All 
tools and measurements techniques and 
calculations are developed in accordance with 
VM0006  and VCS AFOLU requirements.  

The BioREDD project will be using the Verified 
Carbon Standard VM0006 methodology for the 
quantification of carbon stocks and net emission 
reductions, as well as comprehensive analysis of 
satellite imagery performed by GeoEcoMap.  

1 Introduction & Context 
Fig. 1. Location of 8 BioREDD project areas along the 
Pacific Coast of Colombia. 
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The BioREDD project started in 2012 as the flagship environmental program of the United States Agency for 
International Development (USAID) in Colombia. This US$ 27.9 million program is designed to strengthen 
Colombian capacity to mitigate and adapt to climate change, protect biodiversity and support the development of 
remote, impoverished communities. The development of REDD+ projects is a key element of the Program, which 
seeks to promote sustainable livelihoods compatible with forest conservation. BIOREDD+ is developing a portfolio 
of 8 REDD+ projects in the Colombian Pacific to be validated under the Climate, Community and Biodiversity 
Alliance (CCBA) and the Verified Carbon Standard (VCS). The projects are located in four geographic nodes 
covering over 700,000 hectares. 

 

Number of BioREDD Projects 

The BioREDD project selected eight areas along the Pacific coastal region of Colombia for developing REDD+ 
projects (Figure 1).  These areas are distributed in different municipalities along the pacific coastal forests of 
Colombia, covering a variety of ecosystems, transitioning from coastal mangroves and wetlands to paramos and 
high mountain forests.  This area forms part of the Chocó Biogeographic corridor, one of the 10 world´s mega-
diverse hotspots that accounts for more than 40% of the total vertebrate population of Colombia. The REDD+ 
projects will be established in the territories of afrocolombian and indigenous communities along the coast where 
forests have been degraded and are under the threat of further degradation and deforestation for a variety of 
reasons.  The main drivers of forest cover change have been identified as degradation from timber extraction for 
fuel and development needs, illegal logging, gold mining, and conversion of forests to agriculture and livestock.  The 
projects are being developed jointly with local communities who have clear legal title to their land and have 
themselves agreed to REDD+ project development. They will be implementing REDD+ project activities with the 
expectation of generating revenues in exchange for their conservation efforts. 

2 Airborne Inventory Approach 
The monitoring plan will include collection of airborne lidar data before the first verification event to update the 
emission factors for degraded forests and primary forests.  These are the only measurements to update the 
baseline emission factors before the first verification to reduce the uncertainty discounts required by VM0006.  
Following the VM0006 requirements (9.3.2 & 9.3.9), the emission factors will be updated before each baseline 
updates every 10 years. All calculations of emissions and removals during the crediting period will be based on 
monitoring LULC transitions and using the emission factors fixed between the two baseline updates except for the 
intact forests that may have undergone through selective and small scale degradation that are not detected by 
remote sensing LULC monitoring techniques.  In this case, additional measures of conservativeness will be applied 
for updating the emission factors for intact or primary forests before the next lidar flights.   A summary of 
measurement methods and standard operating procedures for lidar measurements for baseline updates are 
provided below and described extensively in references cited here. 

 

2.1 Stratification 

The stratification of landscape has been performed using a series of spatial data sets. The goal of the stratified map 
was to develop a set of forest strata that have similar environmental variables and most probably homogeneous or 
unique forest structure and biomass. We used the following data sets to guide our stratification: 

1. Climate data:  A series of climate metrics were chosen to stratify the landscape based on the total amount of the 
rainfall or the rainfall of dry season.  The climate surfaces were created from a number of databases by R. Hijmans 
et al. (2004) and are available from WorldClim website (http://biogeo.berkeley.edu/). These climate metrics, known 
also as the bioclimatic variables, We used only the rainfall of the driest quarter to include in the landscape 
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stratification. This rainfall metric is known to be the most important indicator of forest structure and dynamics in 
tropical regions (Malhi et al., 2006). Although rainfall in the Choco region reaches to above 8000 mm in some 
regions but they are large variability along the latitudinal and elevational gradients. We used three categories to 
separate the rainfall of driest quarter by dividing them into areas < 300 mm, 300-600 mm, and >600 mm rainfall.  

2. Elevation Data: We also included the SRTM digital elevation data, at 100-meter resolution.  The SRTM data were 
classified into three categories to separate the coastal regions from various landscapes with elevational gradients in 
inland areas. The segmented classes are 1-100 m, 101-600 m, and >600 m elevation.  These general categories 
separate areas along the coast from the hilly areas of inlands and areas along the elevational gradients on the 
foothills of Andes. 

3.Soil Data:  We developed a soil class/landform map for the Pacific coastal region of Colombia to help with the 
stratification of the forested landscape. The soil class data for the entire study area have been derived from the Soil 
and Terrain Database for Latin America and Caribbean (SOTERLAC, version 2) released in 2005 at 1:5 million 
scale (Dijkshoorn, et al., 2005); the assignment of the soil class was based on matching the descriptions of the map 
units and comparing with the landforms and geographical description provided by Sombroek (2000).   The 
categories were reduced to only 8 classes to focus 
on the most important categories for forest types 
and dynamics. The classes included: Heavily 
leached white sand soils, less infertile lowland soils 
(ultisols and entisols, More fertile lowland soils, 
alluvial deposits from the Holocene,  
contemporary alluvial soils including acrisols with 
plinthic and gleyic content, gleysols, luvisols, 
histosols, young, submontane soils, and other soil 
types with less information (probably histosols). 

4 Land Cover: We used ALOS PALSAR HH and 
HV data acquired in 2007-2010 at 100 m spatial 
resolution to derive three categories of land cover 
type for the region. This PALSAR data is L-band 
radar data and is sensitive to forest type and 
structure, and has the additional advantage of being 
unaffected by cloud cover. We created 3 classes of 
forest, nonforest, and swamps. These three classes 
helped to do the first sampling design for lidar and 
plot inventory sampling.  Note that degradation as 
an important forest type in the region was not 
classified at the time of lidar sampling. We beleived 
this could not introduce any bias in our sampling 
design as we use a random sample with the forest 
class that should include both intact and degraded 
forests in the forest class.  

Stratification Approach: We performed the final 
stratification by combining four data layers of 
climate, soil, topography, and the land cover map. 
A program in IDL was written to perform the 
analysis automatically. First, we made sure all data 
layers have the same size and spatial resolution. 
Climate and soil data were resampled to 100 m Fig. 2. Final landscape stratification map of the Pacific 

coastal region of Colombia. 
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resolution to match the SRTM and ALOS products.  The statification was then performed by multiplying all data 
layers to create 3 x 3 x 3 x11=297 classes where among them there were only 103 distinct strata in the coastal 
region with only 46 classes covering more than 90% of the entire image area (Table 1).  We colored the stratified 
image into 30 distinct colors to demonstrate the potential variations of the landscape features that may influence 
the forest structure, carbon stock and dyamics.  The stratified map will be used to define areas for forest inventory 
and airborne Lidar samples.  Out of the 46 strata in the region, there were 36 that fell into the BioREDD regions 
and were used later on to capture the biomass variations by lidar sampling.  

 

Table 1. Data layers and partitions used in developed the stratification map of the region.  

Data Layer Properties and Class Type 

SRTM 1: < 100 m, 2: 100-600 m, 3: > 600 m 

Rain 1: < 300 mm, 2: 300-600 mm, 3: >600 mm 

ALOS/PALSAR 1: Forest, 2: Swamp, 3: Non-forest 

Soil 1:AL+CL, 2: CM, 3: AR+RG, 4: FL+GL, 5: FR, 6: PT, 7: AC + LX, : 8: NT, 9:PZ, 
10: LP; 11: Water 

 

2.2 Lidar Sampling 

The variations of stratified map over areas selected for the BioREDD project along the Pacific coastal region of 
Colombia was used to design the potential flight lines and total flight hours to achieve the systematic sampling of 
the landscape.  The stratified layers will be used in conjunction with other GIS layers such as roads, logistics, and 
access to design the final location of field plots and airborne Lidar flights over the region.  This process will be 
achieved in person with the field crew and Lidar company selected to perform the lidar acquisitions and processing 
over the BioREDD project regions.  After several steps of negotiations with the BioREDD team in Colombia, we 
designed Lidar acquisitions for the 30 strata using 49 flight lines with each flight line having 1000- 2000 ha areas for 
each for a total of 83,000 ha of randomly sampling areas. The process of the Lidar flight design followed the 
VT0005 methodology tool: 

Estimation of areas of stratified landscapes within the BioREDD project nodes. 

Estimation of percent area of Lidar coverage based on the number of strata and area of each stratum within each 
project nodes.  

Developing Lidar coverage using the long transect design to increase the coverage over few strata with one flight 
line and optimize the flight time and acquisitions. 

Flight lines were selected randomly in each strata within the project nodes using the GIS tool the Reversed 
Randomized Quadrant-Recursive Raster (RRQRR) algorithm that is based on the implementation of the 
Generalized Random Tessellation Stratified (GRTS) algorithm. The RRQRR toolbox allows for probability-based 
spatiality balanced sample designs to be implemented within a Geographic Information System (GIS). 

After the locations were selected, the flight lines were designed in three different sizes, all with 2 km width and 
with 5 km, 10 km, or 20 km length to allow the required coverage in each stratum. The design will allow the 
airborne flights to be acquired in an optimum configuration with transects covering large areas and using less time 
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for turns and realigning for flight headings.  The orientation or heading of the flight lines were also selected 
randomly at 45o intervals.  

2.3 Lidar Biomass Model 

In the BioREDD project, the plots are only used for calibration and validation of lidar to AGB model 
following the VT0005 methodology.  The minimum number of plots required for developing and 
validating the remote sensing to AGB predictive model was estimated to be 45, with 30 plots for 
calibration and 15 plots for validation. This requirements were based on a similar methodology as in 
CDM A/R tools for Calculation of the number of sample plots for measurements within A/R CDM project 
activities, and based on minimum number for developing remote sensing and AGB predictive model (Asner and 
Mascaro, 2014). In general one predictive model is enough to estimate forest biomass from lidar in BioREDD 
regions if the ground allometric model used in estimating AGB at the plot level is also one.  If the number of 
ground allometry changes in the project area because of the presence of various forest types,  as in Chave et al., 
2005 for wet, moist, and dry forests, then the number of remote sensing predictive models will also change.  
In the BioREDD project we increased the number of calibration and validation plots in order to make sure that the 
numbers are enough for developing more than one lidar to AGB predictive model if necessary.  A total 15 cluster 
plots were used in 15 lidar transects covering different strata in the BioREDD regions. Each cluster plot met the 
following requirements: 

1. Each cluster plot had one permanent plot of 1-ha in size (100 m x 100 m) and 8 satellite or auxiliary plots 
at 0.25 ha in size (50 m x 50 m). 

2. The center location of permanent plot was selected randomly in the lidar transect in the forest area to 
allow sampling all forest conditions as in fragmented, degraded or secondary forests.  The satellite plots 
were located at 250 m and 500 m away from the center permanent plots in four cardinal directions (Fig. 
6.1). 

3. We also used 45 0.25 ha systematically sampled in a lidar flight line and was used to develop the model and 
tested over other study sites to estimate the uncertainty associated with the model and potential 
improvement of the model.  

4. The measurements in the permanent plots included all trees with DBH ≥ 10 cm in diameter that were 
measured in each plot, with trees being tagged and recorded, x,y coordinates were recorded for 
permanent plots but not the satellite plots, and trees were identified in all plots by species for wood 
density values.  

5. A minimum number of 50 trees in different 
DBH classes were selected for height 
measurements and development of DBH-H 
allometry for the plots or forest type.  The 
number of trees with height measurement 
represented between 7 and 16% of the total 
number of trees registered in each site. All 
trees in San Pablo already had height 
measurements. 

6. A tree-diameter height (H-D) relationship or 
predictive model was developed for each 
cluster plot and also combined for the region. 
We used a Weibull model to estimate the 
height of trees that were not measured 
directly. 

7. The AGB of plot data were estimated using 
the regional allometric equation developed for 
the project.  The estimated AGB values were 

Fig. 3. Relation between lidar mean top canopy height 
and forest aboveground biomass derived from lidar 
measurements and 45 systematically designed ground 
plots in a degraded forest scene used for baseline 
estimation of emission factors.  
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related to the lidar data extraction over the same plots.  
8. The errors in plot estimates of AGB have been accounted in the overall uncertainty anaylsis and included 

errors from the validation process, QA/QC data, and an statistical error propagation model.  
9. The project will use the same lidar biomass model developed during the baseline lidar data analysis to 

estimate the biomass of all forest types and revise the baseline emission factors.  This model was 
developed using the lidar data and ground plots as discussed in GeoEcoMap report #8&9 and the 
uncertainty report # 16.The model has the general form of: 

𝐴𝐺𝐵 = 𝑎(𝑊𝐷×ℎ)! + 𝜖       (1) 

where WD represents the plot mean value of wood density in units of g cm-3, h represents the mean top 
canopy height MCH in units of m, and 𝜖~𝑁(0,𝜎!) represents the uncertainty in measurements or when 
observations deviate from a power-law by accounting for the heteroskedasticity.  The model used in the 
baseline estimates are shown here for reference. This model is derived from the 45 sample plots at 0.25 ha 
with corrected geolocation errors.  To implement the model for biomass estimation from lidar data use 
the following steps: 

 
1. Create forest height map at the native resolution of lidar (e.g. 1-m) by creating CHM (canopy height 

model) from the difference between DSM (Digital Surface Model: the first return) and DTM (Digital 
Terrain Model: last return).  

2. Use the CHM which represent the top canopy height at the lidar native resolution at 1-m to develop 
average mean top canopy height MCH at 50 m (0.25-ha) or 100 m (1-ha) to apply the lidar biomass models 
developed for the same resolution from relating the lidar metric and the ground data in the region.  

3. Develop a raster forest biomass map at 0.25 ha or 1-ha spatial resolution from each lidar image and 
produce a spreadsheet with the location of each lidar 1-ha pixel with geolocation error and the biomass 
estimates. 

4. In the case of mixed intact and degraded forest in the lidar coverage, separate the two by delineating areas 
of degraded forests using a combination of canopy cover estimate from lidar and visual interpretation of 
digital airborne color imagery.  

 

3. Mapping Forest Biomass Carbon Stocks 
 

To provide a forest biomass carbon density estimate for the BioREDD regions or the entire coastal forests of 
Colombia, we used two techniques to extent the lidar estimates of the biomass regionall: 

3.1.  Stratified Estimator 

For the stratified estimator methodology we use a class of conventional design-based estimators used in national 
forest inventory when sampling methods and intensities differ by strata  (McRoberts et al., 2002).  In this approach 
inventory data located in each strata will be use to estimate the mean carbon density of the stratum and the total 
carbon by multiplying the density to the forest area.  In our approach the inventory data have been replaced by 
biomass estimates derived from lidar samples.  Using the function in equation (2) as the model to estimate forest 
biomass from GLAS lidar shots, the mean biomass density of stratum j is given by (1): 

        (2) µ j =

1
n

Fij (α j )
i=1

n

∑

1
n

ηij
i=1

n

∑
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where 𝜇! is the mean carbon density of stratum j, 𝐹!" is the carbon density derived from individual lidar pixels 
located in stratum j along the lidar transect i, n is the number of lidar transects intersecting stratum j, 𝛼! represents 
the vector of parameters used in the biomas model (e.g. a and b in lidar model in equation (2)), and 𝜂!" is the number 
of lidar pixels along each lidar flight transect intersecting stratum j.  The estimate of the variance of the mean carbon 
density for each stratum is given by: 

  (3)  

 

where  

 

       (4)

 

representing the first derivative of the lidar biomass model as given in equation (1) with respect to the  

parameters for each strata.  In equation (3), 𝑐𝑜𝑣(𝛼!!! ,𝛼!!!) is the covariance of k1 and k2 coefficients of the lidar 
biomass predictive model for strata j.  The first term in equation (4) represents the sampling error and the second 
term describes the model error for each stratum.   

In this study we use a total of 36 strata with the lidar coverage and estimate the mean and variance of the 
aboveground biomass in each stratum using the above relations (Table 1).   

 

3.2 Spatial Estimator 

To map the forest biomass at high spatial resolution (100 m) over the BioREDD region or the entire coastal forests 
of Colombia, we make use of a non-parametric machine learning approach based on maximum entropy estimator 
(Saatchi et al., 2011).  The Maximum Entropy (MaxEnt) estimator has been used for national and continental scale 
biomass mapping (Saatchi et al., 2011) and provide relatively similar results as other machine learning approaches 
with some additional  advatages such as developement of an unceratinty map based on an embedded Baysian 
algorithm, and a spatially unbiased estimation.  To implement the approach, we first divide more than 83000 ha of  
biomass estimates of lidar pixels (1-ha) into ranges of biomass (i.e. 0-25 Mg/ha, 25-50, 50-75, 75-100, 100-150, 150-
200, 200-250, 250-300, 300-350, 350-400, and > 400 Mg/ha) and then we run the MaxEnt model for each given 
range to create the probability of predicting the biomass range for each pixel.  Within the MaxEnt model, the spatial 
probability density functions (pdf) for each biomass range is optimally estimated using the Bayesian algorithm.  We 
also adopt a similar Bayesian statistical approach to combine the biomass pdf values over the entire domain of the 
study. Following Baysian statistics, we can interpret the output from the MaxEnt model for a range A for a specific 
pixel (i,j) over the study domain (i.e. entire Gabon) as 𝑃𝑟 𝐴𝐺𝐵𝑚𝑖𝑛 < 𝐴𝐺𝐵!,! < 𝐴𝐺𝐵𝑚𝑎𝑥 𝐴) : the probability of the 
𝐴𝐺𝐵!,! at pixel (i,j) being inside range A (where 𝐴𝐺𝐵𝑚𝑖𝑛 is the lower bound of range A, and 𝐴𝐺𝐵𝑚𝑎𝑥 is the upper 
bound of range A) given condition A (here meaning that we are in the domain of the estimation of each pixel of the 
studying area being either inside or outside of range A, i.e. the Maximum Entropy model run for range A). 

 For an area of study where we divide the AGB into 𝑛 ranges, we obtain a set of probability distributions 
𝑃𝑟(𝐴𝐺𝐵𝑚𝑖𝑛! < 𝐴𝐺𝐵!,! < 𝐴𝐺𝐵𝑚𝑎𝑥!|𝐴!)  for k=1 to n.  If 𝑃𝑟(𝐴!) is the prior probability of having condition 𝐴!, 
then the expectation value of a pixel can be calculated as  

V (µ j ) =
1
η j
2

Fij (α j )−µ jηij( )
2

i=1

n

∑
n(n−1)

+
1
η j
2

Cov(
k2

p j

∑
k1

p j

∑ αk1 j ,αk 2 j )Fk1 j
' Fk 2 j

'

Fk1 j
' =

∂f (xit ,αk1 )

∂αk1t=1

T

∑
i=1

n

∑
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𝑨𝑮𝑩𝒊,𝒋 =
𝐏𝐫 𝑨𝑮𝑩𝒎𝒊𝒏𝒌!𝑨𝑮𝑩𝒊,𝒋!𝑨𝑮𝑩𝒎𝒂𝒙𝒌 𝑨𝒌

𝒎
𝐏𝐫 𝑨𝒌 𝑨𝑮𝑩𝒎𝒆𝒂𝒏𝒌𝒏

𝒌!𝟏

𝐏𝐫 𝑨𝑮𝑩𝒎𝒊𝒏𝒌!𝑨𝑮𝑩𝒊,𝒋!𝑨𝑮𝑩𝒎𝒂𝒙𝒌 𝑨𝒌
𝒎
𝐏𝐫 𝑨𝒌𝒏

𝒌!𝟏
    (5) 

 
where 𝐴𝐺𝐵𝑚𝑒𝑎𝑛!is the mean AGB for range 𝐴! 
, and m=3 similar to the optimum value used in 
Saatchi et al (2011).  This creates the correct 
AGB distribution in the final product while 
keeping the prior distribution from being over-
powering. 
The prior probabilities Pr  (𝐴!) are calculated 
from the number of lidar derived AGB  values 
that fall into each range 𝐴!.  Ideally, a random 
sample of lidar AGB would give a good 
estimation of Pr 𝐴! .  However, no truly random 
sample exists at the global scale.  The lidar based 
AGB distribution approaches the true distribution 
as the area of interest increases and the number of 
orbits increase and become more random.  We 
use the lidar derived AGB  at the BioREDD 
regions or strata to find the prior probabilities 
Pr  (𝐴!).   
The result of the spatial modeling is provided in 
Figure 4 , showing detailed information about the 
variations of forest biomass density over Gabon 
at 100 m (1 ha) spatial resolution.  The map 
shows the concentration of high forest biomass 
density comparable with the field inventory and 
lidar data in central to northern Choco region and 
along higher eelavations away from the coastal 
degradation. The southern coastal region with the 
highest degradation shows lower biomass values 
than other regions. Most degraded and low 
density forests are concentrated in the coastal 
region in Guandal forests and in areas with < 
10% slopes.  
 
 
3.3 Uncertainty Analysis 

In estimating forest above ground biomass 
distribution everywhere in the BioREDD domain, 
each step in the entire process is evaluated for 
possible sources of error, and associated 
uncertainties are quantified.  The sources of error 
on AGB value are, in the order of our model 
procedures, measurement error associated with 
estimation of Lidar height (very small error), 

Fig. 4. Distribution of above ground forest biomass at 1-ha 
spatial resolution in units of Mg/ha. 
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sampling error associated with representativeness of lidar height samples as the true height distribution of the strata, 
as well as heterogeneity of forest biomass in the 100 m pixels (εsampling), prediction errors from the Maximum 
Entropy model (εprediction), and allometric error when converting lidar height metrics to AGB (εallometry).  RMSE for 
Lidar measurement of height is < 1 m at 1 m pixels and less than few centimeter at 1-ha where the AGB is evaluated. 
The lidar measurement error is much smaller  (< 1%) than all other errors and for all practical purpose can be 
ignored in the error propagation approach.   The main source of error in estimating biomass is in ground 
measurements of DBH, height, wood density, and location of the plots that have been quantified in our uncertainty 
analysis document (GeoEcoMap, Report # 14).  Using the methodology developed in report # 14, we will assume the 
uncertainty from ground estimation of biomass can be approximately 20% (10-30%) at 1-ha scale. 

Allometric errors for height to biomass equation can be estimated from the relationships in converting lidar 
measurements to ground estimated biomass. We have a good handle of this allometry as shown in the above section. 
The errors associated with ground allometry is approximately 1-5% at the 1-ha scale. We assume 5% for the sake of 
conservativeness.    

We calculate εprediction using 20% of the samples that were set aside and not used in the MaxEnt model.  We 

estimate the average uncertainty to be 30.2% from model prediction of AGB.   

 

Fig. 5. Uncertainty associated with the pixel level prediction of the above ground biomass from the spatial 
modeling approach.  
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We also estimate spatial uncertainty at the pixel-level by using the predicted probabilities of the MaxEnt 
model in  

𝝈𝑩 =
𝑩𝒌!𝑩

𝟐𝑷𝒌𝑷 𝑨𝒌𝑵
𝒌!𝟏

𝑷𝒌𝑷 𝑨𝒌𝑵
𝒌!𝟏

         (6) 

where Bk is the mean biomass of the kth range, 𝐵 is 
the predicted biomass value, Pk is the MaxEnt 
generated probability for biomass range k, and 
P(Ak) is the prior probability of any pixel being in 
biomass range k as used in SI Equation 2.  The 
relative uncertain for each pixel is then 
𝜀!"#$%&'%() =

!!
!
×100.  We can then calculate the 

total uncertainty in estimating AGB, assuming all 
errors were independent and random, by using 

𝜺𝑨𝑮𝑩 =

𝜺𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝟐 + 𝜺𝒂𝒍𝒍𝒐𝒎𝒆𝒕𝒓𝒚𝟐 + 𝜺𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈𝟐 + 𝜺𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏𝟐  

    (7) 

where each of the terms are the relative errors at 
that pixel. 

The error distribution shows large uncertainty in 
areas where ground and lidar data were not 
collected in the north of Choco region bordering 
the Darien forests.  However, in areas along the 
central coastal plane and away from the high 
elevation areas where most of the ground and lidar 
data collection were concentrated the map appears 
to have less 40 Mg/ha uncertainty on the average 
for each 1-ha pixel. Using the uncertainty from the 
map and the spatial correlation of errors, we arrive 
at very small error at the level of strata or LULC 
for the BioREDD regions.  

To further examine the results of the spatial 
modeling, we will compare the mean biomass 
values for each stratum for the entire region from 
both the stratification estimation and the spatial 
estimation.  In theory, both approaches must 
provide the same mean values.  The results of 
comparison for the entire stratum region for the 
mean over all LULC and only the forest sector are 
provided in Fig. 7.   

The comparison between the two methodology will 
ensure that the sampling strategy and spatial 

Fig. 6. Distribution of forest biomass uncertainty in Mg/ha 
estimated at 1-ha spatial resolution.  
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modeling approaches are consistent.  Results shows that if the mean AGB is calculated for each strata regardless of 
the LULC classes, there is a strong bias particulaly in areas where there are some level of degradation and 
fragmentation in the stratum. This is mainly due to the fact that our original stratification did not have a degraded 
class types, we were able to separate this class and all other fragmentations after performing the LULC classes. 

Therefore, the lidar samples, although random only covered the forest classes in each stratum.  Our original sampling 
strategy also included much large area of coverage that were reduced because of limited flight permissions 
particularly over areas with less security. The lidar sampling also concentrated mainly in the BioREDD project 
regions and strata with no REDD projects were excluded.  To demonstrate that the bias can be minimum and the 
uncertainty in mean biomass estimation will be reduced, we only calculated the mean for the forest class only by 
using the LULC map as a mask.  The results shown in Fig. 7, clearly demonstrates that first the two methodology 
converge in estimation of mean over the strata and the bias reduces signfiicantly, suggesting that the maxent 
mapping approach can provide unbiased estimate of the mean biomass over each forest strata.  
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Fig. 7. Comparison of spatial modeling results and lidar sampling stratification approach in estimating the mean 
forest biomass for each strata within the BioREDD domain with a) showing the comparison when all pixels 
within the stratum were used in calculating the mean from the maxent spatial map, and b) showing when the 
average were performed only on the forest pixels identified by the LULC map.   
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