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1. Statement of task 8 and 9 
Final report of Lidar estimation of forest aboveground carbon estimates over Lidar transects (49 
sample areas of about 83,000 ha) over the project nodes derived from integration of field inventory 
and airborne Lidar data. The report shall include the following components: 1. raw Lidar data at 1 
m spatial resolution for surface topography and vegetation height, 2. processed Lidar waveforms at 
the spatial resolution of 1-ha, 3. forest aboveground biomass estimation from Lidar data in raster 
and vector formats at 1-ha spatial resolution, and 4. uncertainty estimates of Lidar derived forest 
biomass. The report includes both the meta data and the documentations outlining the processing 
steps, methodology, and algorithms to convert Lidar data to forest aboveground biomass carbon 
density. 

2. Background 

We used the stratified map developed during the Task 1 of the project to design the lidar data 
acquisition and the field sampling plots.  The stratification was developed by combining four data 
layers: climate, soil, topography, and the land cover map. We colored the stratified image into 30 
distinct colors to demonstrate the potential variations of the landscape features that may influence 
the forest structure, carbon stock and dynamics.  The stratified map has been used to define areas 
for forest inventory and airborne Lidar samples.  We selected 49 locations randomly in 30 stratified 
regions within the original project areas. We designed the 49 lidar transects to cover approximately 
83,000 ha of forests randomly selected over an area of approximately 1.7 million ha along the 
Pacific coastal forests of Colombia where the BioREDD project has been established. The number 
of transects and the size of each transect was designed to reduce the variance in biomass estimation 
by taking into account the errors in lidar estimates of biomass, allometry, sampling errors, and 
natural variations of biomass. The area sampled by lidar was > 1000 ha and several lidar transects 
were located within each strata depending on the size of the stratum. The over-sampling compared 
to the ground inventory was done intentionally to meet two key requirements: 1) sampling had to be 
random and large enough in each stratum to reduce the standard error in estimation. We aimed at < 
10% error at 95% confidence interval. However with a large number of samples acquired by the 
lidar data, we achieved errors with approximately one order of magnitude better with lidar data.  2) 
The samples were clustered along the lidar flights and therefore required to be large enough to 
provide the balanced sampling to estimate the mean and variance of biomass in each stratum. 

3. Data Sources & Processing 
All raw data processing have been completed by the SAI-FAL, the contractor from Brazil in charge 
of data collection, raw data processing and classification of ground and tree height from lidar data. 
GeoEcoMap was involved in several steps of this process: 

1. Design of lidar data acquisition as random balanced sampling on forest stratification 
within the project area. 

2. Defining the requirements for the lidar data collection. We provided in our reports 
detailed information about the requirements for lidar point density, horizontal and 
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vertical accuracy, geolocation accuracy, ground and vegetation height classification 
accuracy. 

3. We reviewed all products and provided inputs for improvements of lidar processing, 
ground classification, filtering of all anomalous points.  

4. We performed post-processing steps in the delivered products by further analyzing 
the raw data, improving the ground classification over topographically complex 
regions, filtering anomalously high and low points, improving digital elevation 
model by interpolations, and filtering and improving the missing scan line and data 
points in the data in order to reduce the forest structure estimation.   

5. All final datasets were post-processed to include 
forest height metrics at 50 m spatial scale for 
biomass estimation.  The 50 m resolution was 
selected to match the lidar metrics with the 
ground calibration and validation plots.   

6. Figure 1 shows the location of sample plot data 
in the BioREDD project areas with location and 
orientation of flights randomly selected.  

4. Definitions 
The primary focus of this report is to document the accuracy 
of lidar measurements of forest height, ground 
measurements of forest structure and estimation of forest 
biomass for calibration and validation of the lidar data, the 
calibration of the lidar measurements into forest 
aboveground biomass using a lidar biomass estimator, the 
validation of the results using cross-validation, the 
uncertainty estimates required for lidar estimation of the 
forest biomass over project areas.  All calculations are 
performed to meet the requirements of the VM0006 
methodology.  The quantities calcualted and addressed in 
this report are: 

1. Aboveground Biomass in Mg/ha 
2. Aboveground Biomass Carbon in MgC/ha 
3. Tree biomass allometry for converting ground 

measurements of forest structure to biomass 
4. Tree height and diameter allometry for 

estimating height from diameter for trees 
without height measurements. 

5. Wood specific gravity or wood density for 
converting forest volume/structure to biomass 

6. Lidar biomass allometry for converting lidar measurements at the plot level to forest 
biomass 

7. Lidar biomass estimator for estimating forest aboveground biomass in stratified 
forests and in BioREDD project areas. 

8. Mean and variance of biomass estimation for each forest type within the BioREDD 
project areas.  
 
  

Fig.	  3.1.	  Location	  of	  Airborne	  Lidar	  
transects	  along	  the	  Pacific	  Coast	  of	  
Colombia	  over	  stratified	  areas	  and	  
within	  BIoREDD	  project	  areas.	  	  
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Table 3.1. Characteristics, source and the use of remote sensing data used for carbon assessment of 
BioREDD region.  

Data Source Main Use of Data Data Characteristics 

Airborne small footprint lidar data 
collected over the BIOREDD project 
areas based on a stratified random 
sampling as described in report for the 
task # 2.   

Total of 49 flight samples were used 
to cover the stratified landscape of the 
BioREDD regions randomly. Each 
flight line has coverage area of at least 
1000 ha, providing both tree height 
and ground topography over more 
than 83,000 ha of forests. 

Data were collected by Union 
Temporal SAI-FAL, Brazilian 
Company with offices in Sao Paulo 
and Bogota.  
Lidar data were collected from July or 
August of 2013 to January 2014. All 
processing and ground and canopy 
classification were performed by  

SAI-FAL with direct consultations 
with GeoEcoMap, Inc. 

Lidar data will be used to quantify 
several forest height metrics at 0.25 
and 1.0 ha to use the forest 
aboveground biomass carbon stock.   

Lidar data are also used to develop 
fraction of forest canopy cover for 
separating areas of degraded and 

secondary forests from old growth 
forests.   

The posting of DEM and top canopy 
height is at 1 m.  

Vertical accuracy of height is about 25 
cm at 95% CI. 

Horizontal Accuracy < 50 cm at 95% 
CI 

Geometric Accuracy < 1 m using  In-
Fusion Precise Point Positioning 
(PPP) approach.  

Point density of > 4 points/m2 was 
requested and point density of RMS > 
10 points/m2 was achieved over 67% 
of the coverage area.  
Digital Elevation Model was corrected 

at GeoEcoMap by improving the 
ground classification macro on a 

TerraScan platform.  

Concurrent digital photography 
images using a 3-band RGB camera 
were acquired along with the Lidar 
data.   

RGB imagery were acquired over all 
49 sampling units covering more than 
83,000 ha area.  
All RGB images were orthorectified. 

RGB aerial photo imagery are used to 
classify intact forests, degraded, 
secondary forests, croplands, and 

grasslands, and wetlands. The imagery 
provided data for calibration and 

training of the 30 m Landsat data for 
land cover and land use classification 

over the entire pacific regions.  

Spatial Resolution: 20 cm. 

Images are mostly cloud free but have 
geometric problems associated with 
the look angle, sun glare, and haze in 
the imagery.  

 

Ground forest inventory data collected 
within the lidar coverage over areas 
with permissions.  
The plot data are designed to have one 
1-ha and four 0.25 ha plots located  

 

Ground data are used to calibrate and 
validate lidar data. By estimating 
forest biomass carbon stocks and 

developing relations between lidar 
height metrics and forest biomass, all 
lidar data will be converted to carbon 

stocks.  

16 1-ha (100 m x 100 m) plots 

128 0.25 ha (50 m x 50 m) plots 

45 0.25 ha plots in one lidar transect. 
Total of 15 cluster plots are in Lidar 

transects. 

5. Lidar Height Measurements and Accuracy 
This section will provide the basic information about the lidar measurements of forest height and 
accuracy at the plot level. We used several height metrics in developing the lidar biomass estimator. 
These included the percentile heights (RH10, ….RH100). However, we used the mean top canopy 
height (TCH) as the metric for biomass estimation.  The processing provided the TCH for each 50 
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m area over all lidar data developing (83,000 x 4) sample area for biomass estimation. The 
processing steps to develop 0.25 ha scale height metrics from lidar data included: 

1. Evaluation of raw data and classification from lidar (examples of figures) 

We assessed the classification of the lidar raw data into ground and canopy using the point cloud 
data and las files.  In Microstation (using the Terrascan/Terramodel extension) and ArcGIS 10.2 
(using the LP360 extension) the las files were imported and the triangulated ground model was 
visualized to assess the quality of the client classification.  If larger interpolations in the DEM are 
present, they are flagged and 
analyzed to determine whether the 
DEM could be improved via 
additional processing (figure 7.1). 

2. Filtering the high and 
low points 

In forested ecosystems the outlier 
values are generally high points 
caused by low clouds or birds or 
any objects on the path of the lidar 
and top canopy height that 
appears well above the top of the 
forest canopy.  If the client 
classification does not re-classify 
these points as error points, we 
removed them manually so they don’t provide large errors canopy height values.  We re-classified 
all error points by first flagging them in ArcGIS and reclassifying them in Terrascan.  Majority of 
lidar sample areas do not have these high and low points< However, when they are present, they are 
often sparsely scattered throughtout the lidar transects but are sparse and have very low impact on 
the overall accuracy of lidar top canopy estimates at the plot scale.  

 

Fig. 5.1 Large interpolation errors in the DEM derived 
from lidar data. 

Fig, 5.2 High points in a second ‘ghost’ canopy layer. 
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3. Processing the data in height/Aggregation of the data into 0.25 ha grids 

The final two steps are executed in one program.  After the classification has been finalized we 
output a 1 m resolution ground DEM and a canopy CSM from Terrascan in 1km2 blocks from 
Terrascan in Arc grid format.  Once all tiles have been output from Terrascan we process them in 
ArcGIS using python scripts.  The python script executes the following commands: 

Mosaic all tiles for the ground into a continuous DEM geotiff file 

Mosaic all tiles for the canopy into a continuous CSM geotiff file 

Outline the extent of the mosaicked rasters in a vector shapefile 

Subtract the DEM from the CSM on a cell by cell basis to create a canopy height model 
(CHM) which represents the maximum canopy return in a 1-m resolution raster 

Aggregation of the CHM to 50 m grid cells which calculate the mean of all the CHM cells 

 

Fig. 5.3. High points caused by cloud strikes nd birds (white speckling points in throughout the middle 
of the image) 

	  

Fig. 5.4. Digital Elevation Model (left), Canopy Height Model (center) and CHM resampled at 50 m (right).  
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6. Field Calibration and Validation Plots 
This section provides a basic description of biomass plot measurements, which are further described 
in the reports provided by CONIF and Alvaro Duque, for the Forest Carbon Monitoring System and 
calibration and validation of the Lidar data.  For the 
BioREDD project areas, we established both 
permanent and temporary sampling plots to be used to 
estimate carbon stocks across the landscape and for 
implementation of future monitoring for detecting 
changes.  The size and shape of the sample plots for 
tree biomass measurement is a trade-off between 
accuracy, precision, time, and cost for measurement, 
and finally the compatibility with the remote sensing 
data. The most appropriate size and shape may also be 
dependent on the vegetation type found in the 
sampling area. In addition, the plots must be large 
enough to  reduce errors associated with 
geolocation and edge effects when used to 
calibrate the RS data.   The minimum size of plots 
selected for this project is 0.25 ha (Asner and 
Mascaro, 2013; Meyer and Saatchi et al. 2013).  
The 0.25 ha size plot is a compromise between small plot sizes that are efficient in the field 
inventory approaches (e.g. < 0.1 ha) but provide models with large uncertainty between RS 
and ground estimates of AGB, and large plots (e.g. 1.0 ha) that are costly and difficult to 
establish in the field but provide models with the low unceratinty (~ 10% relative error and 
no bias) (Meyer et al., 2013; Asner and Mascaro, 2014).   

In the BioREDD project, the plots are only used for calibration and validation of lidar to 
AGB model.  The minimum number of plots required for developing and validating the 
remote sensing to AGB predictive model was estimated to be 45, with 30 plots for 
calibration and 15 plots for validation. This requirements were based on a similar 
methodology as in CDM A/R tools for Calculation of the number of sample plots for 
measurements within A/R CDM project activities, and based on minimum number for developing 
remote sensing and AGB predictive model (Asner and Mascaro, 2014). In general one predictive 
model is enough to estimate forest biomass from lidar in BioREDD regions if the ground allometric 
model used in estimating AGB at the plot level is also one.  If the number of ground allometry 
changes in the project area because of the presence of various forest types,  as in Chave et al., 2005 
for wet, moist, and dry forests, then the number of remote sensing predictive models will also 
change.  
In the BioREDD project we increased the number of calibration and validation plots in order to 
make sure that the numbers are enough for developing more than one lidar to AGB predictive 
model if necessary.  A total 15 cluster plots were used in 15 lidar transects covering different strata 
in the BioREDD regions. Each cluster plot met the following requirements: 

1. Each cluster plot had one permanent plot of 1-ha in size (100 m x 100 m) and 8 
satellite or auxiliary plots at 0.25 ha in size (50 m x 50 m). 

2. The center location of permanent plot was selected randomly in the lidar transect in 
the forest area to allow sampling all forest conditions as in fragmented, degraded or 
secondary forests.  The satellite plots were located at 250 m and 500 m away from 

Fig. 6.1 Shape and size of permanent and 
satellite plots within the lidar transect. 
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the center permanent plots in four cardinal directions (Fig. 6.1). 
3. The measurements in the permanent plots followed the RAINFOR protocols (REF?) 

All trees with DBH ≥ 10 cm in diameter were measured in each plot, with trees 
being tagged and recorded, x,y coordinates were recorded for permanent plots but 
not the satellite plots, and trees were identified in all plots by species for wood 
density values.  

4. A minimum number of 50 trees in different DBH classes were selected for height 
measurements and development of DBH-H allometry for the plots or forest type.  
The number of trees with height measurement represented between 7 and 16% of 
the total number of trees registered in each site. All trees in San Pablo already had 
height measurements. 

5. A tree-diameter height (H-D) relationship or predictive model was developed for 
each cluster plot and also combined for the region.  Fig.6.2 shows the allometry 
used to convert tree diameter to height for all the trees in the plots.  We used a 
Weibull model to estimate the height of trees that were not measured directly: 
 

𝐻 = 𝑎 1− exp  (−𝑏𝐷!)  
 

where H is the tree height of individual trees measured in the field, and D is 
diameter at breast height of these trees. The coefficients a, b, and c were estimated 
from the measured diameter and height and provided for the regional model as: 

H = 40.51 1− exp(−0.0599D0.7096 )"
#

$
% :   For all 15 random plots

H = 39.79 1− exp(−0.0675D0.7458 )"
#

$
% :   For 45 systematic plots

 

 

 

 

 

Fig. 6.2. Diameter-height models developed from the tree height measurements in the sample plots with 
(a) showing all data used for a regional model using the random cluster plots, (b) showing the model for 
45 systematic plots,  and (c) showing individual models used for different project areas. Models used in 
figure a and b are approximately the same and do not produce significantly differnet biomass results.  
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6. Each tree identified in the plot was given a 
wood density based on the Global Wood 
Density Database for South America.  For 
trees with not identification, we used the 
average wood density of the plot for 
biomass calculation. During the BioREDD 
project, we also measurement wood 
density of a selected number of species at 
the branch and stem levels for improving 
the wood density values for the region. 
The average plot level wood density 
varied in the BioREDD region suggesting 
the heterogeneity of wood density at the 
landscape scale in the Pacific coastal 
forests of Colombia.  

 

 

Table 6.1. Average wood density of forests in BioREDD regions from trees collected in random 
cluster plots.  

BioREDD Project Region Average Wood Density 
Acapa 0.658 
Bahia_Malaga 0.551 
Bajo_Calima_I 0.562 
Bajo_Calima_II 0.593 
Bajo_Mira 0.569 
Buenavista 0.675 
Canton_S_Pablo 0.601 
Chigorodo 0.507 
Chontadural 0.503 
Concosta 0.636 
Curvarado 0.533 
Pizarro 0.518 
Rio_Cajambre 0.494 
Rio_Pepe_I 0.487 
Rio_Pepe_II 0.524 
 

 

For AGB estimations of sample plots, we used the allometric model developed for the study region 
by the BioREDD team.  First we used the Chave et al. 2005 model for moist forests to estimate the 
biomass for each plots. However, the BioREDD project provided funding to develop local 
allometric equations for the trees of the Pacific coastal forests. The models developed for the region 

Fig. 6.3. Comparison of two H-D models for 
the Choco forest types derived from 15 1-ha 
random plots and 45 0.25 ha systematic plots.  
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included three types of forests in the regions: Terra firme (Colinas), Inundated forests (Guandal), 
and mangrove forests (Manglar).  Trees were harvested in the region and combined by harvested 
trees from past research activities to develop the models. The models included uncertainty analysis 
and comparison with Chave et al. (2005) and (2014) allometric equations and differences were 
reported (see BioREDD project report BR-SUBK-FP-022).  The equations are summarized below: 

Colinas ln(AGB) = -2.130+2.015×ln(D)+0.724×ln(H)+1.002×ln(WD) 
Guandal ln(AGB) = -2.328+1.833×ln(D)+0.724×ln(H)+0.151×ln(WD) 

Manglar ln(AGB) = -2.818+2.185×ln(D)+0.724×ln(H)+0.650×ln(WD) 
 

For estimation of the biomass of palm trees in all types of forests, we used the allometric 
equation developed by  Saldarriaga (2014).  

ln(AGB) = -0.173+0.700×ln(D2× H× WD) 
 
For biomass values estimated in individual permanent and satellite plots see table 6.3.   For each 
plot, we also have an indentifier and discription by the field group that summarizes the type an 
condition of the forests such as degraded, secondary forests, Guandal, Colinas, Manglar, etc.  Most 
plots fall in mixed forests, therefore the biomass values estimated from allometric models are 
applied on the tree level to provide estimates of the biomass at the plot level.  

 
 
Table 6.2. Mean and standard deviation of forest biomass  of 15 cluster plots within the BioREDD project 
areas. 

Name of 
Culster Plots 

Number of 
WD samples 

Average WD 
of Trees 

Average WD 
of Trees and 

Palms 

Average 
number of 

trees per ha 
AGB (Mg ha-1) 

Acapa 30 0.658 0.630 357 144.5 ± 50.6 
Bahia_Malaga 81 0.551 0.531 636 217.6 ± 65.9 
Bajo_Calima_I 100 0.562 0.537 694 154.9 ± 56.6 
Bajo_Calima_II 70 0.593 0.563 634 170.5 ± 37.4 
Bajo_Mira 30 0.569 0.543 460 105.9 ± 24.6 
Buenavista 73 0.675 0.657 505 304.7 ± 40.0 
Canton_S_Pablo 38 0.601 0.588 569 214.0 ± 51.7 
Chigorodo 98 0.507 0.505 485 260.8 ± 95.4 
Chontadural 168 0.503 0.480 538 207.4 ± 29.6 
Concosta 84 0.636 0.606 612 364.5 ± 472.0 
Curvarado 73 0.533 0.522 442 342.7 ± 157.0 
Pizarro 81 0.518 0.495 396 162.1 ± 51.6 
Rio_Cajambre 31 0.494 0.457 1300 125.6 ± 39.0 
Rio_Pepe_I 160 0.487 0.476 538 167.1 ± 31.8 
Rio_Pepe_II 160 0.524 0.502 769 215.9 ± 60.6 
 

In addition to above plots, we also developed a set of 45 plots, each 0.25 ha in size for spatial 
uncertainty analysis of the lidar estimation of biomass. We selected one lidar transect with 
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relatively easy access and with no previous plots and developed 45 systematically located plots 
(Fig. 6.3).   Number of plots to estimate mean biomass density at 10% error with 95% confidence 
was calculated to be 45 0.25 ha plots.  We calcualted the mean and the standard error by using a 
lidar biomass allometry model developed for the region, predicting the mean and variance and using 
the variance to estimate the number of plots required for the ground measurements.  

The sampling design followed the standard methodology as in CDM AR tools for the number of 
sample plots as in: 

  

n = (1.96σ
ε

)2

n : Number of plots to estimate mean biomass
1.96: Coefficient for 95%confidence interval
σ : Standard Deviation of Distribution
ε:  Error 

Fig. 6.3. Schematic of the systematic sampling design of a lidar transect for quantifying the 
spatial uncertainty of lidar estimation of bimass using lidar to AGB predictive model. 
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Table 6.2. Forest biomass estimated for all permanent and satellite plots in the BioREDD project 
regions. 
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Table 6.3. Estimated biomass for 45 sample plots used for lidar spatial uncertainty analysis. 

 

7. Lidar Biomass Estimator 
In this section, we sumamrize: 1) 
the Lidar estimator or predictive 
model, 2) estimation of biomass 
from all 83,000 ha lidar data, and 3) 
estimation of mean and variance of 
lidar derived AGB for each stratum 
and land cover type in the 
BioREDD project areas.  In the next 
section, we will provide the steps 
taken to insure the uncertainty in 
estimates are rigourous and valid for 
the entire project area. The sampling 
approach of the lidar data is 
summarized in Fig. 7.1 

 

Lidar Biomass Predictive model 

From lidar data we derived various 
height metrics to examine the 
accuracy of the best relationship for 
aboveground biomass estimation. These metrics included the percentile of energy from lidar data 
using the point cloud information or only the top canopy height for each lidar pixel (1 m).  As 

Fig.	  7.1	  Schematic	  of	  lidar	  random	  sampling	  of	  stratified	  landscapes	  
over	  the	  BioREDD	  region	  on	  the	  left	  panel.	  The	  remote	  sensing	  units	  
(RSU)	  are	  the	  lidar	  transect	  flight	  lines.	  On	  the	  right	  panel	  the	  lidar	  
transect	  with	  pixels	  representing	  0.25	  ha	  (50	  m	  x	  50	  m)	  aggregated	  
from	  1-‐m	  lidar	  data	  with	  location	  of	  sample	  plots	  for	  calibration	  and	  
validation	  of	  lidar	  datais	  shown.	  	  



	  

	  

 15	  

shown in various earlier work, the top canopy height at the native pixel level of lidar is the most 
reliable metric to use for biomass estimation (Meyer et al. 2013; Asner and Mascaro, 2014). The 
quality of point cloud data is highly variable over individual lidar transects or between transects if 
data were taken at different dates with different lidar flight configuration or environmental 
conditions such as canopy moisture because of the impacts on NIR (Near Infrared Lidar) signal 
penetration into the canopy.   

Using the top canopy height at each pixel as the basic measurement of lidar data, we developed 
several metrics such as mean top canopy height (TCH) and 25, 50, 75, and 100 (maximum height) 
percentiles of 2500 points at 50 m x 50 m scale.  We tested three types of equations for evaluating 
the contribution of these metrics for biomass estimation: 

AGB = ahTCH
b +ε

AGB = a0 + a1h25 p
b1 + a2h50 p

b2 + a3h75 p
b3 + a4h100 p

b4 +ε

AGB = a0 + a1h25 p + a2h50 p + a3h75 p + a4h100 p +ε

 

Where hTCH represents the mean top canopy height, and the metrics are 25, 50, 75, and 100 
percentiles. In all equations  𝜖~𝑁(0,𝜎!) represents the uncertainty in measurements or when 
observations deviate from a power-law by accounting for the heteroskedasticity.   After testing all 
three equations, we arrived to the conclusion that the first equation using the simle mean top canopy 
height (TCH) is the most reliable model as the other models, although slightly improve the 
coefficient of derminiation with AGB and the RMSE error of estimation, the are more subject to 
errors and sometimes require a higher number of plot data for robust estimations of model 
coefficients.  The TCH model has only two coefficients (a,b) and can be readily developed using a 
minimum number of 30 points or ground plots.  

We then tested the following two models in terms of their accuracy in estimating biomass in 
different forest types.  

AGB = a(WDhTCH )
b +ε

AGB = ahTCH
b +ε

 

 

where WD represents the average WD density 
at the plot level added as linear term to 
improve the estimation of AGB over areas 
with different WD.  We have already 
calculated the average WD of each plot within 
the cluster plots (permanent and satellites) and 
also calculated estimates of mean WD for 
forest type identified during the ground 
measurements and comparison of coordinates 
with the land cover map of the region.  The 
advantage of model 1 withiout WD 
component is its straightforward application 
with the lidar data. Model 2 with WD requires 
that the regional or landscape variations of 

Fig. 7.2 Lidar biomass model derived from mean top canopy height 
(TCH) and aboveground biomass estimated from ground data. The 
model with WD performs better than the model without WD 
because of variations of WD over the landscape and within the 
BioREDD project areas.	  
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WD is known.  Using the above two equations, we tested the goodness to fit of both models to the 
plot data evaluated by AIC (Akaike Information Criterion) . The AIC is a measure of the goodness-
of-fit that penalizes parameter-rich models, as required by the principle of parsimony (Burnham & 
Anderson,2002). The results as shown below: 
 
AGB =1.484(WDhTCH )1.575    ( AIC = 2780,σ = 0.32)  

AGB =1.707hTCH
1.548                 ( AIC = 2850,σ = 0.34)  

 

 
The model with WD performed slightly better than the model without WD (higher AIC and σ). We 
removed the plots with significant numbe of mangrove trees and Guandal, we noticed that the 
models were not significantly different.  We concluded that the model with WD performs better 
than the model without WD only in forests with mangrove trees and in inundated forests (guandal) 
by improving the RMSE of estimation by approximately 10%.  Figure 7.2 shows the difference 
between the models and the improvement.    
The uncertainty of the above models have been evaluated using cross validation approach and using 
plots not used in developing the model. In the above equation we only used 30 plots to develop the 
model in order to demonstrate how the methodology works with the minimum number of plots. 
Overall, we have the following number of plots to evaluate the lidar model: 1) 15 1-ha permanent 
plots within the lidar transects. We divided each plot to four 0.25 ha plots to increase the number of 
plots for calibration and validation. This resulted to 60 plots at 0.25ha, 2) we have 15 sets of 
satellite plots falling in the lidar transects with each set having 8 satellite plots at 0.25 ha for a total 
number of 120 with 109 plots accuractely located in lidar images, and 3) we collected 45 plots in 
0.25 ha systematically within one lidar transect.   Overall, we had 214 plots at 0.25 ha in size to 
develop and test the accuracy of lidar predictive model.  

Table 7.1. Number of plots established in the BioREDD project and used in developing and testing 
the accuracy of Lidar biomass model. 

Forest inventory 
plots 

Size and shape Number of plots 
in Lidar 
transects 

Number of plots 
at 0.25 ha size 

Number of 
0.25 ha in 

lidar transects 

16 permanent plots 1-ha, 100 m x 
100 m 

15 64 60 

16 cluster of 
satellite plots 

0.25 ha (50 m x 
50 m) 

15 128 109 

1 set of systematic 
sampling plots 

0.25 ha (50 m x 
50 m) 

45 45 45 

Total - 75 237 214 

 

We use the following steps to evaluate the performance of the model or the lidar estimator on the 
above sample points.  We use general statistical terms in representing the errors: 1) the mean 
squared error (MSE) of an estimator measures the average of the squares of the "errors", that is, the 
difference between the estimator and what is estimated.  The MSE is the second moment (about the 
origin) of the error, and thus incorporates both the variance of the estimator and its bias. For an 
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unbiased estimator, the MSE is the variance of the estimator. Like the variance, MSE has the same 
units of measurement as the square of the quantity being estimated.   

Statistical Analysis 

The statistical analysis includes evaluating the performance of the model selected above based on 
regressing a dependent variable (AGB) against one or several independent variables (in our case, 
WD and H).  We follow the general form of the model as shown above by assuming ε as an error 
term as a normally distributed with zero mean and SD of σ. If the model as the one selected above 
as p parameters (p=2 for WD and h), then the σ is defined as:  

 

AGB = a(WDhTCH )b +ε

ln(AGB) = a+bln(WDhTCH )+ε

RSE =σ =
1

N − p
εi

2

i=1

N

∑

N (ε) = N (0,σ 2 ) :   Distirubtion of errors

 

The model as shown above can be linearized in the ln form to simplify the model as a linear 
regression model.  The model be used to estimate AGB from the parameters developed at the plot 
level, i.e. average wood density WD (g cm-3) and hTCH (m).  The estimated value of AGB can be 
written as: 

AGBest = exp a+bln(WDhTCH )+ε!" #$= exp(ε)× exp a+bln(WDhTCH )!" #$

where

exp(ε) = exp(ε)N (ε)dε   with N (ε) = N (∫ 0,σ 2 )

exp(ε) = exp(σ 2 / 2)
then

AGBest = exp σ 2 / 2+ a+bln(WDhTCH )!
"

#
$

 

The last equation provides the unbiased estimator for AGB using the height and wood density. To 
examine the model, we used the plot data and calculated the average systematic error (bias) and the 
coefficient of variation (CV) as follo 
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bias = 1
N

(AGBest (i)− AGBobs (i))
AGBobs (i)i=1

N

∑

RSE = 1
N − P

AGBest (i)− AGBobs (i)#$ %&
2

i=1

N

∑

MAGB = 1
N

AGBobs
i=1

N

∑

CV =
RSE
MAGB

 

where RSE is the residual standard error representing the random errors.  The standard deviation of 

estimation error can be computed as: SD = RSE 2 −bias2 . 

The table below provides the model fit and the accuracy of the model in estimating the AGB. The 
bias can be readily excluded in the estimator.  From the table, it appears that having a minimum of 
30 plots for calibration and 15 plots for validation will be enough to acheive at the required lidar 
biomass predictor model and uncertainty assessment. More plots provides only slighty improved 
results. Note that here, we used one allometric model for all forests. In the case, more allometric 
models, for each model, a minimum of 30 plots are required for calibration.  

Table 7.2. Lidar biomass predictive model Model goodness of fit and uncertainty assessment using 
the plot data available for the BioREDD project.  

Calibration 
Sample 
Size 

Model fit Assessments Validation 

Sample 
Size  

Cross Validation Results 

σ  AIC DF RSE Bias CV 

30 0.329 47 3989 15 37. 96 2.27% 18.8% 

50 0.326 45 3990 25 35. 24 2.01% 16.2% 

100 0.319 45 3980 50 33. 96 2.20% 15.8% 

150 0.311 43 3980 75 31. 96 1.98% 14.8% 

8. Lidar Biomass Estimation of BioREDD Project Areas 
The lidar data acquired over the BioREDD region followed a stratified random sampling approach 
where the remote sensing sampling units (RSU) are the flight lines of lidar with a minimum area 
coverage. Each flight line has a given swath with regular grid cells of 0.25 ha with biomass 
estimations that are considered the population elements.  Flight lines or sampling units are designed 
to provide a balanced random sample of stratified classes and therefore for each strata j there are ηj 
sampling units and within each sampling units there are ηij lidar grid cells. The lidar grid cells 
within each flight line are considered clustered and the estimator for the mean and variance of 
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biomass density for each stratum are given as follows (Naesset et al., 2013; Neigh et al., 2013; Stahl 
et al., 2011). 

µ j =

1
n j

Fij (α j )
i=1

n j

∑

1
n j

ηij
i=1

n j

∑

var(µ j ) =
1
η j
2

Fij (α j )−µ jηij( )
2

i=1

n

∑
n(n−1)

+
1
η j
2

Cov(
k2

p j

∑
k1

p j

∑ αk1 j ,αk 2 j )Fk1 j
' Fk 2 j

'

where

Fk1 j
' =

∂f (xit ,αk1 )

∂αk1t=1

T

∑
i=1

n

∑

where
AGB = f (x,α,ε) = a(WDhTCH )

b +ε

 

where 𝜇! is the mean carbon density of stratum j, 𝐹!" is the carbon density estimates for sample i in 

stratum j, nj is the number of RSU intersecting stratum j, 𝛼! represents the vector of parameters used 

in the biomass model (e.g. a and b in lidar model in above AGB equation, and 𝜂!" is the number of 

lidar biomass units (cluster size) in each sample unit i intersecting stratum j.  Note that if lidar 

biomass estimates are at 1-ha units, 𝜂!" represents the size of the lidar transect or RSU in ha.  In 

above equation,  𝑐𝑜𝑣(𝛼!!! ,𝛼!!!) is the covariance of k1 and k2 coefficients of the lidar biomass 

predictive model, represented by function f for stratum j.  The first term in equation in variance 

estimate represents the sampling error and the second term describes the model error for each 

stratum.  The above relations will be simplified if only one lidar model is used for all strata.  

The lidar model-assisted estimator of biomass (carbon density) is approximately a design-unbiased 

estimator irrespective of the model of choice when the number of samples collected in each RSU is 

large (which is the case in airborne lidar collection). The design is unbiased because within each 

stratum, ground plots are used to make the lidar predictor model unbiased (as discussed above) 

(Naesset et al., 2011).  The variance estimator also propagates the error from the lidar predictive 

model for estimation at the statra and land cover class scales.  

We collected 45 ground samples in a lidar sampling unit or transect to also estimate if there has 

been any bias in estimation of biomass at scale of sampling unit (lidar flight transect). The mean for 

each sample unit can be readily rewritten as: 
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µ =

µ̂ j
j
∑

N
+

ê j
j
∑

n
ê j = µ j − µ̂ j

where ê j  is the difference between ground estimated biomass µ j  and lidar

estimated biomass µ̂ j  using the lidar model.  If the number of plots n used for 

estimating ê j  is large (> 10 ) (Sarndal, 1984).  

 

Having more than 30 ground plots will allow us to remove the bias in the system and have an 
unbiased estimate of mean and standard error.  

Using the above relations, we followed the following steps to estimate the mean and variance of 
biomass density in each strata and also based on the land cover types used in the VM0006 
methodology. 

We used the following steps to estimate the aboveground biomass for the BioREDD regions at the 
scale of strata, LULC, and project areas: 

1. The unbiased lidar predictive model was used to estimate the biomass for each grid 
cell within the lidar sampling units.  Since the grid cells are 0.25 ha each, we 
developed approximately 332,000 (i.e. 4 x 83,000) estimates at grid cells. Each grid 
cell has a lattitude and longitude identifier that can be traced to a location within 
each strata in the BioREDD project region.  Each estimate has an error associated 
with it according to relations provided in the previous section.  

2. The grid point estimates and the form of the mean and variance estimator shown in 
this section are used to estimate the mean biomass in each strata and the BioREDD 
project area by using the proportion area of each stratum in the project area as given 
by:  
µPA =

1
PA

wjµ j
j=1

m

∑

where wj  is the proportion area of each stratum in PA (Project Area)

µ j  is the biomass density for stratum j

m is the number of strata in the project area

 

3. For the LULC classes, we use the same methodology as the strata and replace the 
stratification by LULC map and use the lidar grid cells as samples for estimating 
biomass mean and variance of LULC class types.  
 

9. Products 
The products are provided as biomass carbon estimates and uncertainty for strata, selected 
BioREDD project areas, and LULC class types in each BioREDD project regions. We also provide 
the forest carbon density for all 28 initial BioREDD region.  
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Table 9.1. Mean and standard error of forest above ground biomass carbon density in each stratum 
using lidar derived biomass values at the pixel scale (0.25 ha) over the areas intersected by each 
stratrum.  In this analysis only stratified areas associated with the forest areas are considered.   

Stratum 
# 

# of  
pixels 

# of 
intersected 

RSU 

Mean 
AGB 

(Mg ha-1) 

Standard 
Error 

(Mg ha-1) 

Min 
AGB     

(Mg ha-1) 

Max 
AGB     

(Mg ha-1) 
1 1148 3 220.6 1.97 31.36 458.21 
4 2191 3 47.379 0.422 29.75 201.1 
5 139 1 113.26 5.98 30.31 336.9 
6 341 1 66.047 1.87 29.8 208.88 
8 4298 4 112.42 0.884 29.77 386.24 
11 18989 7 245.02 0.658 29.82 634 
12 10563 8 160.44 0.584 29.93 507.13 
13 4589 5 123.71 0.657 29.78 324.07 
14 14320 6 179.54 0.838 29.78 657.16 
15 7117 5 129.54 0.783 29.74 494.08 
16 399 1 187.71 2.66 37.51 389.67 
17 49115 7 208.48 0.303 29.74 516.06 
18 18431 5 179.99 0.473 29.77 548.24 
19 25937 8 198.84 0.436 29.76 541.89 
20 14882 5 161.1 0.546 29.8 493.17 
21 1464 2 140.47 1.9 29.79 396.26 
22 12088 4 132.33 0.587 29.75 466.73 
24 3384 2 246.15 1.22 29.75 495.32 
27 3354 1 246.71 1.27 30.34 573.5 
30 286 1 192.87 2.59 92.99 472.91 
31 10350 4 245.2 0.731 30.18 625.28 
32 5121 3 271.52 0.889 30.03 504.83 
34 3013 2 242.08 1.68 29.76 541.2 
38 14489 7 250.76 0.44 30.61 560.31 
39 1336 1 248.83 1.34 35.79 443.54 
41 3818 3 216.53 1.06 30 712.54 
42 358 1 250.87 2.66 122.4 457.4 
44 4503 3 215.68 0.786 29.99 444.32 
48 223 1 260.39 3.63 130.1 398.84 
51 60 1 203.68 5.76 131.6 315.07 
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Table 9.2.  Mean and standard error of biomass in LULC classes within the BioREDD regions. 
Under each class the top number is the mean and the bottom number is the standard error calculated 
from the relations shown above from lidar derived biomass at pixel scale (0.25 ha).  

BioREDD 
Project Areas 

VM0006 Land Use and Land Cover Types 

Intact 
Forest 

Degraded 
Forest 

Pasture Crops Wetlands Settlement Other 

Chicao 

275.29 
0.80 

79.81 
1.48 

22.9 
1.58 

 

48.62 
1.31 

 9.76 
0.51 

 

Apartado Buenavista 
273.37 

0.76 
70.28 
1.06 

18.61 
1.46 

34.01 
1.40 

  17.12 
1.39 

La Madre 
250.16 

1.52 
95.91 
0.96 

18.92 
1.36 

30.71 
1.50 

32.83 
0.99 

  

Rio Montaño 
304.01 

2.77 
111.31 

0.78 
22.72 
1.21 

39.46 
1.55 

27.65 
0.87 

 33.71 
0.86 

Vigia de Curvarado y 
Santa Ros 

128.92 
0.98 

62.75 
1.44 

17.59 
0.81 

25.71 
1.34 

29.72 
1.41 

4.79 
0.22 

20.01 
1.32 

Chontadural Cañero 
296.63 

0.84 
135.57 

1.02 
14.3 
0.84 

28.53 
1.13 

   

Bellavista y Union 
Pitalito 

248.27 
0.76 

131.02 
1.23 

14.34 
0.98 

28.94 
1.50 

12.70 
0.81 

14.26 
0.94 

 

Polines 
313.12 

1.22 
111.35 

2.08 
17.32 
0.97 

23.30 
1.11 

   

Yaberarado (Abibe 
Chigorodo) 

240.03 
1.28 

141.77 
1.96 

37.78 
2.43 

46.77 
2.11 

 12.1 
0.63 

 

Bajo Grande 
234.64 

0.98 
88.75 
0.96 

22.34 
0.51 

24.08 
0.88 

   

Santa Rosa de Ijua 
254.74 

0.64 
122.92 

0.86 
17.60 
0.67 

31.60 
0.73 

 8.66 
0.54 

 

Ordo Siviru 
Aguaclara 

263.44 
0.66 

118.19 
0.97 

10.01 
0.59 

22.02 
0.77 

   

Jaikerazavi (Abibe 
Mutata) 

218.41 
1.22 

80.07 
2.18 

22.15 
0.93 

41.40 
0.73 

 15.78 
0.34 

 

Rio Pepe 
238.29 

0.85 
76.70 
1.11 

21.37 
0.58 

31.08 
0.65 

 22.73 
0.38 

44.63 
0.41 

Mayor del Canton de 
San Pablo 

249.16 
0.64 

123.38 
1.38 

15.77 
0.83 

38.21 
1.38 

 25.07 
0.53 

23.41 
1.77 

Pizarro 
204.42 

1.41 
89.28 
1.28 

18.22 
0.77 

47.12 
1.57 

 13.24 
0.38 

31.97 
0.34 

Bajo Mira y Frontera 
172.63 

0.76 
58.60 
0.74 

15.12 
0.51 

27.16 
0.54 

17.56 
0.71 

15.30 
0.45 

24.48 
0.47 

Acapa 
255.88 

1.66 
60.09 
2.13 

16.30 
0.76 

36.48 
1.1 

11.49 
0.89 

22.34 
1.21 

 

San Andres Usaraga 
227.14 

1.18 
89.16 
1.04 

16.32 
0.54 

35.24 
0.63 

 20.30 
1.29 

 

Siviru 
188.42 

1.21 
65.15 
0.86 

23.65 
0.44 

31.58 
0.86 

14.70 
0.22 

21.56 
0.38 

 

Pedeguita y Mancilla 
264.98 

2.10 
81.59 
1.62 

21.21 
0.65 

31.32 
0.98 

12.14 
0.20 

21.81 
0.66 

12.81 
0.19 
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Los Rios La Larga y 
Tumarado 

278.72 
1.15 

123.33 
56.23 

26.11 
0.62 

32.77 
1.76 

13.48 
1.12 

27.96 
0.60 

27.70 
0.45 

La Costa - Concosta 
273.26 

2.34 
84.62 
1.31 

33.69 
1.26 

38.42 
2.01 

 16.83 
0.48 

32.30 
1.34 

Rio Piliza 
268.85 

1.28 
119.54 

1.28 
21.91 
1.56 

29.57 
2.02 

 35.94 
2.01 

62.35 
1.66 

Rio Baudo - Acaba 

256.59 
1.20 

105.10 
1.25 

18.35 
1.74 

27.76 
1.99 

 

47.02 
1.20 

21.12 
1.19 

36.47 
1.72 

Rio Calima (Bajo 
Calima) 

270.82 
1.35 

124.92 
1.44 

30.38 
1.36 

33.05 
2.08 

52.71 
2.90 

11.61 
0.54 

14.69 
0.8 

Rio Cajambre 
267.41 

1.38 
117.35 

2.35 
31.50 
1.32 

53.70 
2.35 

69.68 
1.36 

  

Bahia Malaga La 
Plata 

276.93 
1.53 

125.16 
3.15 

33.21 
0.93 

33.74 
2.70 

13.6 
1.38 

  

 
 
Next, we estimate the aboveground carbon density and standard error in priority project areas 
selected for establishing REDD+ projects. The area of the project areas are smaller than the above 
regions and cover a combination of forest areas.  For estimating carbon from biomass, we have used 
the fraction of 0.485 used in most tropical studies.  This factor is less than 0.5 recommended by the 
IPCC guidlines.  

Table 9.3.  Mean and standard error of the carbon density for priority project areas.  The class 
numbers are: 1. Forest, 2. Degraded forest, 3. Grasslands, 4. Croplands, 5. Wetlands, 6. Settlements, 
7. Other lands. 
BioREDD Project Areas Land Cover Types AGB_Mean (MgC/ha) AGB_SE (MgC/ha) 
BMBC 1 137.8481 1.4812 
 2 53.98446 1.7984 
 3 15.77896 2.1676 
 4 20.5056 1.2012 
 5 15.9641 2.0988 
 6 6.560251 0.43949 
 7 17.9625 0.63584 
CDD 1 161.02431 1.6804 
 2 36.97894 1.1710 
 3 16.97222 1.2806 
 4 8.501385 2.1625 
 5 10.82348 0.91725 
 6 0.2939836 0.043650 
 7 34.03397 1.6881 
SUPP 1 141.4029 2.1329 
 2 68.05023 2.2782 
 3 10.40879 1.8794 
 4 5.847085 1.7809 
 5 0 0.0000 
 6 8.3129 0.32215 
 7 26.69632 2.1279 
BMF_ACAPA 1 153.49675 4.5374 
 2 78.30404 2.0869 
 3 12.93648 1.5032 
 4 17.64887 1.2884 
 5 15.29623 1.0375 
 6 7.283083 0.26140 
 7 22.66439 0.94841 
CAJAMBRE 1 136.079 1.7262 
 2 69.33057 2.2327 
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 3 17.17667 1.7318 
 4 28.52794 1.4162 
 5 24.08764 1.7097 
 6 5.75 0.33953 
 7 5.8 0.056657 
CONCOSTA 1 148.83324 2.0843 
 2 81.77203 2.1042 
 3 15.7625 1.5443 
 4 22.15574 1.5248 
 5 23.50919 1.3750 
 6 3.2725 0.15316 
 7 16.48239 0.83079 
MUTATA 1 129.2673 2.1823 
 2 71.78804 2.7106 
 3 16.34767 2.1922 
 4 29.79207 2.2564 
 5 0 0.0000 
 6 14.37875 2.1568 
 7 0 0.0000 
RIO_PEPE_ACABA 1 130.7909 1.9814 
 2 52.50507 1.8920 
 3 15.88363 1.8362 
 4 27.70095 1.5082 
 5 0 0.0000 
 6 16.96421 0.44335 
	  

10. Summary and Conclusion 
This report provided the methodology and the estimation of forest biomass from lidar inventory 
sampling of the BioREDD region.  The relations provided in the report are also used in the 
methodology tool document currently under review for approval.  The sampling approach used in 
this study mimics the statistical field inventory approach.  By collecting a large number of remote 
sensing data, we were able to not only estimate the forest biomass but reduce the standard error 
significantly compared to often limited ground sampling approaches.  The results from our analysis 
can be summarized as: 

1. An unbiased estimator for the mean and variance of the biomass based on lidar 
stratified random sampling was developed.   

2. The predictor model is based on two parameters: mean top canopy height derived 
from lidar at the plot scale (here 0.25 ha), and the average wood density at the 
landscape, regional, or forest type scales.  

3. A minimum of 30 sample plots was required to develop the lidar biomass model 
and about 15 plots for validation and uncertainty assessment for each key forest 
type with different ground allometry. Adding more plots for calibration and 
validation only slightly improved the model fit and the uncertainty in biomass 
estimation.  

4. The estimate of variance also includes the error propagation from lidar biomass 
modeling and sampling uncertainty. Since the number of biomass samples from 
lidar measurements is large, the standard error including the spatial autocorrelation 
remain small.  
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5. Here, we focused only on the aboveground biomass. In the next report, we will 
provide the carbon numbers for all pools necessary to estimate the emissions from 
deforestation and degradation.   
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