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The present working document contains the initial papers of a series
whose ultimate purpose is to provide a realistic basis for a fresh appraisal
of both the surplus production and the dynamic pool appruaches to
fishery yield analysis.

The main idea is to tighten the concepiual framework of the “trinity”
of recruitment, survival and growth, uncovering links among the three
sectors by using recently developed physiologically structured models’
methodology. There are good reasons to argue that this endeavour is
appropriate and suitable for understanding tropical fisheries.

Paper I is a plain introduction to the general procedures for building
physiologically structured models and the basic mathematical tools and
results, mainly in the spirit of the Dutch school. In Paper Ii we lay out
our strategy: to introduce and solve structured models in order to eluci-
date the underlying assumptions of simple production models. The case
1s made again for the use of size-structured models in tropical fisheries.
Such a strategy demands a fair amount of work and the resolution of
some paradoxes (cf. the treatment of Aldenberg's paradox in II, §6).

The decision to try to apply this type of modelling to stock-assess-
ment problems in the context of CRSP was taken during a visit of
J. M. Gracia-Bondia to the Chesapeake Bay Laboratory at Solomons
in May 1986. These were gratifying, ‘ntense days of fecund discussions.
We include here the memorandum then written with Brian J. Rothschild
because we believe it keeps its programmatic value. Paper [ was drafted
in April 1987 and extensively revised in February 1988. Paper II was
written in May 1987 and underwent some slight revisions later.

We gladly acknowledge our debt to many people: this is a kind of
collective work, as it should be. Cluney Stagg provided much needed
early encouragement at Solomons. Vincent Gallucci, Pat Sullivan and
Han Lin Lai of Seattle provided instructive criticism. Manuel Murillo
of CIMAR dexterously helped to keep alive our interest throughout.

José M. Gracia-Bondia thanks Odo Diekmann for inviting him to the
Amsterdam meeting on the dynamics of physiologically structured po-
pulations in January 1988; to him and tc Hans Metz also for a pleasant
stay at the Centrum voor Wiskunde en Informatica at Amsterdam and
the Institute of Theoretical Biology at Leiden. Thanks are also due
to Andre de Roos for useful discussions. Last, but not least, Jerry Ault
of Miami went with us through every paragraph of Paper II, perpetually
forcing us to strive for greater clarity, precision and breadth.

José M. Gracia-Bondia and Joseph C. Varilly
San José, February 1988



Memorandum: On a class of mathematical rmodels
suitable to describe the Biodynamics of the Sea

BRIAN J. ROTHSCHILD AND JOSE M. GiACIA-BONDIiA

Center for Environmental and Estuarine Studies,
University of Maryland, Solomons, Md., USA
CIMAR and Escuela de Matematica,
Universidad de Costa Rica, San José, Costa Rica

1. One of the requirements for an adequate theory of the biodynamics of
the sea is that it should provide an explanation for the relative stability
of marine populations. We do not deny, by any means, that large fluctu-
ations of marine populations are sometimes observed. But, the purpose
of the theory is precisely to relate these fluctuations to the fluctuations
(periodic or otherwise) of the environmental parameters. We will tend
to reject a priori, on these grounds, models which give unlimited growth,
rapid decay or unwieldly oscillations, in constant environments.

2. It is a general principle that linear equations with constant coeffi-
cients are (almost) always exactly solvable and (generically) unstable.
This is because the behavior of their solutions is governed (for ¢ — o)
by the highest lying eigenvalue. If it is negative, we will ultimately have
decay (after some oscillations perhaps). If it is positive, we will have
unlimited growth. This is also true of the more sophisticated models
that we are about to propose here: under fairly general conditions it
is possible to prove that the “spectrum” of a linear operator (see be-
low) has a highest lying eigenvalue, that the age structure incorporated
in our model becomes stationary, but the total number of individuals
undergoes unlimited growt'i or decay.

Of course, in a given problem, the highest lying eigenvalue could be
exactly 0 and the number of individuals when ¢t — oo approaches a
constant. But there is no generic stability: any change of the (physical,
biological) parameters describing the problem, from which the eigenva-
lues are derived, will send the model down dangerous tracks. We cannot
attach significance to this ocurrence.

"There is another possible “trick”, that is, to modulate the changes of
the environment in such a way that the oscillations of the population are
maintained within prescribed limits. We are now talking about linear
equations with variable coefficients. This could be useful in specific
situations. But, according to the general requirement outlined in §1,
we have to conclude that linear models are not suitable to describe the
biodynamics of the sea.

Typeset by Ap4S-TEX



3. Of course, we would expect a priori that a successful model of the
biodynamics of the sea be a nonlinear one, because complicated feedback
loops are an important characteristic of any complicated ecosystem. But
we have to put some conceptual limits on the degree of complications
that we are willing to consider, if we are to obtain any insight at all.

It should be possible to construct some general “statistical-mechanics-
like” model for the entire ecosystem that we are studying, giving us some
confidence that the system as a whole will function as a “reservoir” (in
the thermodynamic sense) with respect to any one of its components.
That is to say, we are neglecting the feedback of the fate of the species
of interest on the whole system. To articulate this more concretely,
consider predation, for example. The population of predators should be
relatively insensitive to what is going on for the given particular species
of interest, because that one is orly a minute fraction of the pooled
prey population; predators may “switch off and on” between possible
kinds of prey. In another language, we would say that, even if the
distribution of a given function changes with time (and we are bound to
examine these phenomena, if we want to test asymptotic stability), the
whole system, being composed of a large number of species, will remain
in “equilibrium”. Let us take that as a plausible assumption for the
moment. From our point of view, the system as a whole is described by
a number of parameters which couple with the physiology of the species
in question. There is no reason to assume (and no interest, as we have
seen) that this coupling is linear in the number of individuals of the
species under consideration. Also, the parameters could vary with time.

4. Admittedly, the description of the “state” of a population merely by
the number of its individuals is too crude. Furthermore, it makes for a
poor connection of population dynamics with the other levels of biolo-
gical science (such as the study of the behavior of individual organisms
aud even of systems of organs), because in general it is difficult to justify
the ad hoc mathematical terms on a biological basis,

Also, if we are to recognize structure (age, length, etc.) in the given
species of interest, we have to avoid ordinary differential equations, be-
cause they describe instantaneous transitions between life stages and are
in this sense self-defeating. As a matter of fact, with ordinary differential
equations we are not able to follow the histories of particular individu-
als and, as a consecuence, there is no clear way of maintaining adequate
bookkeeping for the populations through the different stages. The whole
point of having different life stages is lost.

5. The “continuum distribution pcpulation dynamics” models are flex-
ible anough to incorporate the relevant physiological information which
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may be available.

Let us describe the models. The physiological state of each individual
is represented by a vector, i.e., a point z in a state space. If we need
n variables to describe a state, the state space is a subset D of R™. It
is important to appreciate that r might incorporate not only age, but
length, weight, geographic location, gonad content, whatever we think
is important.

The individual trajectories are described by a differential equation:

dr
— =v(z).
5 = v(z)
Of course, v reflects the influences that have affected the individual
given its species, age, length, sex, ... We have not emphasized in the

notation that v includes parameters relating the individual to the envi-
ronment; if the latter is variable, v would depend on time as well. The
description at the individual level is too detailed to be useful; we shall
choose to describe the state cf the population as a whole by a continu-
ous distribution function (it would be perhaps more accurate to talk of
a continuous density function) that we shall call n(z;t). The meaning
is the following: n(z;t) Az gives the number of individuals whose phy-
siological state is described by a point of the state space inside a cube
of volume Az = Az, ... Az, centered at z = (z,,...,z,), at a given
time ¢.

It is clear that this is the same type of description that one finds in
the kinetic theory of gases. The continuity equations of hydrodynamics,
that we borrow, assure systematic bookkeeping:

%;—L- + div(nv) = births — deaths (1)
We recall here that the operator div, applied to an n-dimensional vector
function 8 = (f,,...,8s) of n variables (z,,...,z,) yields:
_ 98 9% 96,
divf = Oz, t 90, Oz, +”'+azn'

At any time, the total number of individuals of the species of interest,
with state in a given subset of D, say Dy, is:

Np, =/ n(z;t) dr.
Do

We may see now (1) as a dynamical equation, which gives the evolution
of n with time, provided that we specify D, v and the rates of birth and
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of death corresponding to each value of z. Usually births will appear as
boundary conditions.

The description is deterministic, in the sense that the behavior of po-
pulations is related to the (predictable) behavior of individuals in the
state space. There is an inherent stochasticity related to the birth and
death processes; we approximate it by describing these chance occur-
rences in terms of rates.

6. A better understanding of the flexibility of the model may be gained
from some examples.

i) Suppose that we take z to represent only the age a. In this case
v = %% = 1. Suppose furthermore that we know that the average fraction
of fish which die during the time interval d¢, at age a, is 7(a), and that
the age-specific birth-rate is 8(a). Then (1) reduces to the “von Foerster

equation”:

on On
—— —_— — D)
at + aa + 7(“)”’ 0 ("’)

which may be solved explicitly (in conjunction with the birth condition

n(0,t) =/ o B(a)n(a;t)da

Qmin

and the arbitrarily given initial (¢ = 0) age distribution) to obtain n(a;?)
at all times. This is done on pp. 63 and following of the book by Nisbet
and Gurney and will not be repeated here.

We remark that (2) is a linear equation and so the general considera-
tions of §2 apply.

ii) To illustrate the formalism, consider a population of monocellular
beings which do not die, but divide into twe identical cells when its
“size” s is inside a given range. Let us call d(s) the rate of division.
Then (1) gives:

‘a'r%l + %(U(S)n(S; 1)) + d(s)n(s;t) — 4d(2s)n(2s;1) = 0. (3)

In this case individuals “jump” instantaneously from one point in the
state space to another; birth may happen “everywhere” and not as a
boundary condition.

iii) Let us look at more-to-the-point examples. Let us consider fish
whose behavior in state space is described by two parameters, age and
length. Then we have z = (a,l). We have, as before, %‘:— = 1. Now the
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evolution of the length of the individuals with time should be related to
the length already reached and—here is the coupling with the “external
reservoir”’—with the availability of food.

We try to manufacture an example with plausible assumptions. First
of all, the rate of food intake may be considered proportional to the
area of the digestive apparatus, and then to [2. Second, let y be the
perceived food density. The maximum food intake would be in principle
proportional to y. Let us call @ the constant of proportionality. If the
food availability is very big, the fish could become satiated at the maxi-
mum, so we model ingestion by a function that it is nearly proportional
to y when y is small and nearly equal to a constant when y is large: for

. . at
. So we have: ingestion = e
T+y ty
The ingested resources are used in (i) maintenance, (ii) reproduction,

and (iii) growth. We may suppose that maintenance is proportional
to weight, and then to [*. Let § be the fraction of ingested resources
allocated to maintenance divided by the energy cost of growth. We have,

finally:

instance ¢g(y) =

dl® bay dl day
- = _12_ 3. 2__=
& T Try M W EE1,

dl = 6ay #l — . o, .
dt 3(1+ y) - 3 flly) (by definition).

2 —ul’ or

We must keep in mind that y is the perceived quantity of food, which
is a function of physical environment (turbulence of water, temperature,
irradiance, ... ) as well as a function of the real density of food z.

The continuity equation gives now:

(e, + on(a, ) + 2 (F(y)n(a,58) = ~1(a, Data, 1) (4

In order to solve it, we have to specify births as boundary conditions,
presumably relating them to age and length, as above; we will not go into
that now. As before, v is the mortality rate, which depends mainly on
age a for natural mortality and on length ! for mortality due to fishing.

Equation (4) still seems linear in n. But we need not consider y to be
merely a given external parameter, because y is dynamically dependent
on consumption. This can provide the nonlinear term we are looking
for.

7. To summarize, the continuum distribution population dynamics are
appropriate to incorporate any relevant biological information that we
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may happen to have about the species under consideration; that is what
we have attempted to shiow, rather clumsily, with the previous examples.
"This is perhaps the main advantage of method; practical biologists may
be apt to feel that this kind of models fits better to their concerns than
the usual ad hoc machinery of population specialists.

On the other hand, it is indisputable that we are pushing mathema-
tics for biology here to a new degree of sophistication: as the spaces
where distribution functions n(z;t) “live” are infinite-dimensional, we
are bound to use “functional analysis”, the type of analysis charac-
teristic of the twentieth century, in order to study deeply equations
like (1). The Hille-Yosida theorem of semigroup theory gives the es-
sential tools for that in the linear case but the nonlinear one is, as usual,
much more difficult. It appears to be philosophically wrong to expect
great breakthroughs in the biodynamics of the sea without developing
a mathematical panoply suitable for treating the real-life complications
in a theoretically realistic way.

8. Realistic models should be elaborated to take account of the follow-
ing:
1) Other physiological traits of interest.
ii) Specified assumptions about food consumption and its relation to
environmental characteristics; also to birth and mortality rates.
iii) Effects of variable environments.
iv) Change of feeding habits during the life history of a species.

9. Finally, we should pay attention to the possibility of justifying the
idea outlined in §3 if not on a first-principle basis, at least in a self-
consistent way.

Bibliographical Note. Chapter 3 of Nisbet and Gurney’s book Model-
ling Fluctuating Populations (Wiley, New York, 1982) is concerned with
single-species models with age structure. However, it does not explain
that its “von Foerster equation” is an instance of the continuum equation
of hydrodynamics: the fact that the state space could contain other
parameters different from age is not sufficiently stressed. When it comes
to seek regulatory (non-linear) effects to stabilize the populations, it
postulates a relationship between the total number of individuals and
the birth and death rates very different in spirit from our treatment of
food availability.

A good place to look for the appropriate methodology is Nieuw Archief
voor Wiskunde 4 (2), 1984.



The Significance of Physiologically Structured
Models for Fish Stock Dynamics. I

JoseEPH C. VARILLY AND JOSE M. GRACIA-BoNDiA

CIMAR and Escuela de Matematica,
Universidad de Costa Rica, San José, Costa Rica

1. GENERAL CONSIDERATIONS

The classical models of population dynamics are of the lumped type:
all individuals are treated as identical units and it is hoped that the
gross features of the population under study are captured in a very
small number of global parameters.

In opposition to lumped models, structured models purport to take
account of differences among individuals of a given population-—mainly
with respect to developmental stages—in the hope of a more detailed
confrontation of the models with real data.

At first sight, the physiologically structured models we treat below
appear full of promise at the i-level (see §2); practical biologists may
well feel that this kind of models fits better tn their concerns than the
usual opaque ed hoc machinery of “population mathematicians”.

However, any modelling methodology will entail drastic simplifica-
tions, compromises made in search of mathematical tractability and,
indeed, sources of insight. Before we decide to apply structured popu-
lation models to a given class of fisheries, we have to critically examine
the worth of this effort.

We can do no better than to refer to the classic of marine biology [1].
Hardy vividly illustrates there the consequences for the fishery of differ-
ent age structures in the stock. This exercise was done for populations
in a steady state; it is clear that these differences in structure are more
significant in transient modes of the population.

This first paper seeks only to delineate the basic framework and fun-
damental theorems pertaimng to a population dynamics theory which
incorporates the description of dynamical, ecological processes at the
individual level; detailed specific models and applications are dealt with
in subsequent papers, referred to as IT and III. Here we include:

a) An introduction to the state-representations, at the i-level (§2) and

the p-level (§3). The basic partial differential equations of the theory
are derived in §3.
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b) A detailed review of the simplest case of age-structured populations,
including full solutions and a sketch proof of the “ergodic theorem”
(54).

c) An analysis of the size-structured case, which, we believe, is of di-
rect relevance for tropical fisheries. The concept of age-equivalent
representation is introduced and a generalized ergodic theorem is
discussed (§5).

d) Considerations of stochasticity in the variables and parameters used
in the description of the i-space and some mathematical questions
are touched upon in §6 and §7.

2. THE i:-STATE REPRESENTATION

To obtain a measure of biological realism in physiologically structured
models we must work at the level of the individual description, or i-state
representation. The individuals are considered as input-output systems,
the input being given by the interface with the environment. The vari-
ables employed to describe the state of the system may be very diverse,
depending of the focus of interest in our study: age, size, geographic
location, sex, epidemiological state, concentration of toxic chemicals,
gonad content, ..., whatever we think is relevant.

The larger the number of variables introduced, the greater the penalty
we will have to pay in terms of mathematical and computational difficul-
ties. OQur variables should be judiciously chosen so as to minimize their
number, with the constraint that the following necessary qualifications
should be met:

i) The i-state at a given moment should be completely determined by
the i-state at a previous moment and the intervening environmental
history;

ii) The “behavior” (output) of the system at time ¢ should be deter-
mined by the values of the variables characterizing the i-state at .

As an example, if we can argue that the offspring production, feeding
rate, and probability of dying of an individual fish, all depend just on
its size (and on the current environmental conditions), then size alone
is enough to describe the i-state.

We shall denote by D the space of the possible i-states. In practice,
D will always be a subset of R*, the ordinary k-dimensional space. Let
us denote by r a point of D. The models we have in mind are determin-
istic: two individuals with the same value of the system variables and
experiencing the same circumstances will follow their life histories in a
predetermined, indistinguishable way. It goes without saying that this
assumption (called the “strong” form of the i-state description) restricts
the class of populations to which the present modelling philosophy can
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be reasonably applied. We will consider in §6 how the deterministic con-
dition can be relaxed; as it stands for the moment, it means in practice
that the individual ‘trajectory’ is governed by a differential equation:

dr
— =v(z;t). 1
= o(zi) (1)
Here v reflects the influences that affect the individual, given its
present state; if the environment is variable, it will depend on time.

3. THE p-STATE REPRESENTATION

We have then the picture of a multitude of identical individuals, flow-
ing inexorably in their state space forward in time. We must also incor-
porate birth and death, which are inherently random processes at the
i-level. The point, however, is that we want to address questions to the
mode] at the population level: such as, how much fish biomass is present
at a given t between certain ages; what is the probability of dying in a
given period for fishes of a certain size; what is the expected offspring
of our population; and sc on. In order to do so, we define the p-state as
a frequency distribution over the space D of i-states: this is the ideal
counterpart of the natural population under study. We make implicitly
the assumption that the numbers characterizing the population are very
large, so births and deaths—and other stochastic “jumps” in the i-state
space, see II, §6-—play a role in the p-state dynamics only through their
averages.

It is clear that this is the same type of description that one finds in
microscopic theories of fluid motion. One is not interested in following
the motions of particular molecules or microscopic parts of the fluid, but
in the properties and dynamics of the whole. However, and this is the
point we want to emphasize next, once the “microscopic theory” (i.e.
the workings of i-state level system) is specified, we have no freedom of
choice in regard to the p-level dynamics. In fact, that dynamics is given
by the hydrodynamical continuity or mass balance equation, assuring
automatic bookkeeping (in this picture, births can be thought of as
“sources” and deaths as “sinks”).

From the mathematical point of view, the simplest available deduc-
tion of our transport equation uses the Gauss divergence theorem: let
n(z;t)dz; ... dz, give the number of individuals whose physiological
state is described by a point of the state space inside the hypercube of
sides (zy,; + dzy; 79,29 + dz3;...;2,, T, + dz.,), at time t. Then n
represents a p-state. Let Dy be a subdomain of D with (a piecewise
smooth) boundary dD,. At each point of D, we may identify the flux
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vector ¢: the number of individuals which are transported across the
boundary at point z € 9D, per unit of “area” on dD,p and per unit of
time is v - ¢, with v the outward pointing normal at z.

Clearly, the total number of individuals with state belonging to D, at
time ¢ is

Npu(t)=/D n(z;t) dz.

Conservation of the individuals forces is to write (we suppress argu-
merts of functions in the formulae that foliow):

d

7 nd:z:-f—/ v-odo =0 (2)
Do 8D,

where do denotes measure of “area” on 9D,.
Gauss’s divergence theorem states:

/ v-pdo = div p dz. (3)
a'Do 'Do

So we find:

d on
— ndr + / div d:z::/ <-——-+div<p> dr =0.
dt /o, Jp, 7 b, \ Ot

Since Dy is arbitrary this implies:

on

ot

which is the desired equation.

We note that this way of reasoning is the equivalent of the Eulerian
approach in fluid dynamics theory (sec A.IIL3 in [2]). We prefer it
to the alternative Lagrangian approach because it remains valid when
there are random components in the i-state movement (as will be briefly
considered in §6). Straining the fluid dynamics analogy a bit, it means
that the argument is still good for a kinetic theory of the microscopic
motion. In the present deterministic framework, one has simply ¢ = nv,
v being the same as in (1).

The less mathematically-minded reader in referred to 3, Chapter 5]
for a lower-brow treatment, which is of course tantamount to an intuitive
argument in support of (3).

If we take into account the probability of death, we end up with:

on

T + div(nv) = —un, (4)

+divp =0
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where p(z;t) is a mortality rate which is always strictly positive. We
suppose that births occur only at the boundary of the state space, so
they enter the theory as a boundary condition for (4), which is our
fundamental dynamical equation.

As it stands, equation (4) is linear, which is an important mathe-
matical asset but, as recalled in the previous memorandum, a biological
liability. Nonlinearities can be introduced via the feedback coupling of
the environment with the system.

4. AGE STRUCTURE

Chronological-age-dependent population dynamics models have been
around for a long time. Although they are not directly relevant in our
context, they are important as giving the simplest examples of structured
models, and also for theoretical reasons, as will be explained in §5. This
theory started in the classical paper by Sharpe and Lotka [4] under the
guise of the linear renewal equation (10). The ergodic theorem was dis-
believed by their contemporaries. Equation (5) was written down first
by McKendrick (5] and forgotten; it was rediscovered (33 years later!)
by von Foerster (6], whose name it usually carries. The determinis-
tic linear theory embodied in equations (5) and (10) forms the basis of
modern standard human demography [7,8,9]. Sinko and Streifer [10] in-
troduced size jointly with (chronological) age; Oster and Takahashi [11]
considered variable (periodic) environments in some detail. A mathe-
matically heavygoing book, working rigorously witk nonlinearity in the
pure age-dependent context is [12]. For the generalization of the ergodic
Sharpe-Lotka theorem, one should mention [13]. The general theoreti-
cal framework is, as rightly argued by the main authors in [2], in statu
nascendi. However, that book itself shows some signs of maturity al-
ready in progress.

Next we derive the main formulas of the standard theory of age-
structured populations. We concentrate on the relevant ideas behind
the formalism and refer for technical details to [14]. Let us denote age

by a. As % = 1, equation (4) reduces to:
Oon On
B + Ba + pun = 0. (5)

Let us suppose, for the time being, that the mortality rate does not
depend on ¢. If no(a) := n(a;0) is the initial population, equation (5)
has the solution:

nla;t) = ng(a — t)exp (— /: pla —t+ s)ds) (6)
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valid for a > t. It clearly represents the dying off of the original members
of the population. To calculate the solution for a < t, we need to specify
the birth rate b(¢) = n(0,t). Let us give names: ¢(a), the birth kernel,
is the expected number of offspring that an individual will beget from
birth until age a; B(a), the maternity function, is the mean number
of offspring produced by an individual aged a; and F(a), the survival
function, is the probability that an individual survive to age a. We have
here ¢(a) = B(a)F(a) with F(a) = exp (- [, u(a') da’) and the rencwal

condition:

n(0;¢) = K(t) = / " Bla)n(a; ) da. (7)

The remaining half of the solution to (5) is then:

n(a;t) = exp (- /O " ) da') /O " Ba)n(dst - a)dd!,  (8)

valid if a < ¢. Note the compatibility condition ng(0) = 4(0).
It is supposed that relevant p-outputs can be calculated from the
p-state n, using appropriate kernels:

Fp,(t) = , f(a)n(a; t)da. (9)

Here, for example, f could denote the i-space feeding rate; F' is then the
total feeding rate, for individuals inside a given age-class represented by
Dy.

The simplest example is the total population number

N(t) = /Oamx n(a;t) da.

We have reached a formally complete solution of the linear problem
for age-structured population in a constant envircnment. However, for
many purposes an alternative approach is to »e preferred. From (7) and
(8) it is clear that we can calculate any linear functional of the p-state,
if we know the initial distribution ny and cz = solve for the birth rate b.

This is indeed feasible: we clearly have fromr (€), (7) and (8):

b(t) = / bt — a)é(a) da + g(t) (10)

where g(t) is the rate of births inte the population which are not daugh-
ters of individuals born after t = 0:

o) = [ notaipta+ Tt da ()
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(It is instructive and left to the reader to derive (10) and (11) from
first principles.) We write b = ¢ x b + ¢, with * denoting convolution.

Equation (10) is an inhomogeneous Volterra equation of the second
kind (the argument of the unknown function appears as the limit of the
integral) that can be solved by Laplace transforms: defining

b(s) :=/ e7*th(t) dt, &(s) :=/ e”*t(t) dt, etc.,
0 0
we have, by the convolution theorem [15]:

b=bé +§, (10"

I'Qz

'13=1 - =§(l+é+42+...)

It can be shown that the expansion is convergent. We conclude that:
b=g+g*xd+gxd*xd+...

The solution makes sense, as it easy to see that ¢ x --- * ¢ (n times)
is the mean rate at which nth generation births happen. Uniqueness of
the solution is guaranteed by Titchmarsh’s theorem [15, 2.15, Sitze 11
and 12].

From here to the ergodic (Sharpe-Lotka, renewal) theorem it is just a
short step. We start by removing the initial moment of the population
to t = —o0, so we have to solve:

b(t) = /0 ™ bt — a)(a) da.

Substituting a trial solution of the form b(¢) = Ce™, we find the
equation:

$(r)=1. (12)

Now ¢(a) > 0. This seemingly trivial observation implies that for s real,
the Laplace transform is a (smooth) monotonically decreasing function
with d;(+oo) = (. Moreover, if, as usual, the Laplace transform is defined
for Res > o, and lim,|, ¢(s) > 1 (this last inequality will be true in any
reasonable biological context), then (12) has a unique solution, called
the intringic rate of natural increase associated with the birth kernel 4.

The ergodic theorem asserts that r is greater than the real part of the
remaining roots of (12). From this it foilows that the birth rate and the
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population must grow or decay exponentially with a time constant 'l_—,
asymptotically reaching a stationary relative distribution. Moreover, the
conclusion still applies under some suitable technical assumptions, if we
reintroduce g into the picture. This was first proved rigorously and in
full detail by Feller [16], and so ended the controversy surrounding the
paper [4].

Note that q~5(0) Z1 <= r =0; ¢(0) is the net reproductive number,
the mean number of offsping that an individual is expected to bear
during its lifetime (more on that in II, §5).

We conclude this section with a remark: the integral (Sharpe-Lotka®
form of the (McKendrick-von Foerster) partial differential dynamical
equation exists even in the absence of constant environmental conditions;
but of course the ergodic theorem no longer applies in this general case.
For the nonlinear problem, the integral form still exists in some cases,
and an example will be presented in III.

5. SIZE-STRUCTURED POPULATIGNS,
AGE-EQUIVALENT REPRESENTATIONS
AND GENERALIZED ERGODIC THEOREMS

Age is a variable of minimal physiological significance in fisheries.
Other variables, size in particular, are more appropriate as building
blocks of an i-state representation. It is a relatively trivial matter to
rewrite equation (4) adapted to the case at hand. However, a general
theory for solving the resulting equation in closed form does not exist.
We can show by an example what the relevant problems are and what
pitfalls should be avoided. We choose a length-based model that will be
examined in more depth in UI. For constant death rate, the dynamical
equation that we read from (4) is:

%n(l; t) + —gl-(g(l; z)n(l; 1)) = —pn(l; t). (13)

Here g denotes the right hand side of the differential equation for fish

growth:

dl

7 = (), (14)

where z is a collective name for parameters which describe the (possibly
variable) state of the environinent. The precise form of g, whether it
corresponds to von Bertalanffy’s law or otherwise, need not concern us
here.

Now, the birth rate s not the same as the frequency distribution of
length at birth (as should be clear from dimensional considerations).

14



Assuming that ail individuals have the same length at birth, the correct
boundary condition which replaces the first equality in (7) is:

b(t;z) = n(lyi t)g(ls; z) (15)

with b of the form [, B(}; z)n(l; t) dl.

The main theoretical question relative to a physiologically structured
model is whether there exists an age-equivalent representation. A neces-
sary condition for that, which turns out to be sufficient in most practical
cases, is the

“Principle of natal democracy”: all individuals are born equal.

(In other words, I is the same for all fish under consideration.)

Let us write, as an example, the age-equivalent representation for the
system described by (13) and (15). We suppose for the time being that
the environment is constant. The idea is to attack (13) by integrating
it along tne characteristics, in other words, by integrating the ordinary
differential equation (14). Suppose that ¢ > 0 always, and that the solu-
tion of (14) is given by [ = L(a) (the parameter along the characteristics
is just age); here l, = L(0). Using this expression, we can perform a
change of variables from [ to a in (13) and we get a similar equation for
the age distribution m(a;t):

aa_r;z + %% = —um (16)
with the birth rate b(¢) = Oa'““ B(L(a))ym(a;t)da.

Ther it is possible to go to the integral representation of the age-
equivalent problem (16) and the ergodic theorem applies. Rctracing
our steps, we obtain the generalized ergodic theorem that we will use
in II: the solutions of the linear problem (13) with suitable boundary
conditions given by (15) tend asymptotically to an exponentially growing
or decaying solution, with a stationary relative frequency distribution in
the length variable.

For a form of von Bertalanffy growth depending on the feeding rate,
this distribution is exhibited in II in full detail.

So we have generally three representations for the p-state dynamics of
a physiologically structured model: the original form which comes from
(4), the representation derived from integration along the characteristics
of (4), and the integral form given at the end of §4. If “natal democracy”
does not apply, ve can still distinguish cohorts of individuals born with
different i-states c4, and then go over to an integral equation for the
birth rate. So, although we can no louger speak of an age-equivalent
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representation, we have in any case three forms of the dynamics, among
which we may choose according to their ease of use in various applica-
tions [17].

Also, if the environment is no longer constant, equation (16) is not
enough to descrite the dynamics, as the characteristics of (13) change
over time. But this is easily fixed by introducing a supplementary equa-
tion to (16):

al ol
‘a7+a—a=g(l,a:) (17)

which will update g as needed.

6. WEAK 1-STATES

The conceptual framework laid down in §2 does not really demand the
rigid determinism we have adhered to so far. Provided we are prepared
to accept an interpretation of p-states as mere probability distributions,
we can allow stochastic “motions” at the i-state level and work out the
corresponding flux . Nor is one committed to Markev diffusion pro-
cesses, contrary to what is asserted in [2, III B|.

We can roughly distinguish among “internal” and “external” stochas-
ticity, depending on whether we consider the variables of the system or
the input as the random variables. In some sense the latter is more
fundamental, as we can think of the former as a superposition of deter-
ministic problems of the kind we have already faced.

§7. A WORD ON MATHEMATICS

We believe that the foregoing sections show that one need not be a
mathematician to formulate and to deal with physiologically st1.1ctured
population models. What matters most here is an abstract pattern of
reasoning: going from a picture of the i-behaviour, by good use of the
fluid dynamics analogy (some prefer a conveyor belt analogy) to the
p-state dynarnics.

Underneath there is of course a deep mathematical theory, namely,
the theory of semigroups in Banach spaces: a fine exposition is to be
found in [18]. Works like [12] make heavy use of it. In fact we can see
the evolution of n as the result of applying a semigroup of operators
on an infinite-dimensional Banach space to the “initial condition” ng:
the differential “generator” of that semigroup is specified by our biologi-
cal assumptions; and it often happens that mathematical difficuities in
determining conditions for existence and uniqueness of the solutions of
our equation—the main concern of mathematicians—tura out to hinge
on hidden compatibility conditions. Also, the satisfactory solution of
subtle paradoxes like that of Aldenberg (II, §6) demands the use of
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tools of operator theory. The renewal ergodic theorem is in fact a result
of spectral theory in the infinite-diinensional context.

However, in order to fruitfully manipulate formulas, these questions
are not usually a problem as long as we are able to develop the necessary
“common sense”. And so, we can safely leave tliem to mathematicians,
for whom the theory of physiologically structured models is already prov-
ing an attractive hunting ground.
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The Significance of Physiologically Structured
Models for Fish Stock Dynamics. II

JosE M. GrACIA-BOND{A AND JOSEPH C. VARILLY
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1. USE AND ABUSE OF MODELS

The conventional wisdom in fish stock assessment is to keep separate,
up to a point, the stock-recruitment relationship aspect and the pro-
duction asipect. It is only sensible not to mingle excessively a relatively
reliable model with a highly doubtful one, provided that doing so does
not strain reality too much. Sometimes, in practice, this is tantamount
to using constant recruitment as an input for the production model.
Still, total yields may be predicted if average recruitment and equilibri-
um yield per recruit are susceptible of calculation. There are also many
models which do mix production and recruitment, but in a completely
ad hoc way.

When addressing the problem of tropical fisheries, this conventional
wisdom runs aground. For one thing, many tropical fish spawn continu-
ously in time. Concepts and methods like yield per recruit and following
of the cohorts through time become difficult to grasp.

The purpose of this series of papers is precisely to test the usefulness
of (physiologically) structured models for gaining understanding about
the dynamics of tropical fisheries. This kind of models is well suited for
continuously spawning populations.

This does not mean that we intend to incorporate structured mod-
els for biological sector calculations in fisheries management modules
as a matter of course. We want to keep things as simple as possible.
It has been pointed out, in a somewhat different context, that simple
stock-production models give results which are no worse than structured
models,for instance for calculating optimum fishing effort [1].

One obvious reason for that is the difficulty of parameter estimation
in the more elaborate model. We will show later how some of the pa-
rameter indeterminacy may be removed. At any rate, we believe that
simple production models, having number or biomass as the sole vari-
able, should be used as long as it is feasible. Of course a “biological
realist” would argue that the same biomass consisting of juvenile fish or
of mature adults will show very different growth and reproduction pat-
terns. For a deeper reason, however, this is almost irrelevant in usual
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circumstances. The population-dynamics process is a highly redundant
self-stabilizing one [2]. Suppose you have a fish population in a pond
and you reduce drastically the food supply. You will get stunted fish
and for a while a highly transient mode will occur, such as to need a
structured population model to be followed in some detail. But sooner
or later the population will stabilize itself at a lower level: fish will tend
to regain their usual weight and number will be as good an indicator as
it had always been [3].

Our strategy is then to use structured models as ancillary to the build-
ing of (hopefully) simple production models.

It is only too easy, in this latter kind, to introduce equations and pa-
rameters devoid or physical underpinning. Throughout the construction
of structured models we force ourselves to think rigorously about the
problem at hand, to take account of biological interactions, to uncover
paradoxes, and so on.

Formulating the state space dynamics is, as we will see, a healthy
way to bring out into the open the hidden assumptions and to eliminate
(or to alleviate at least) the inconsistencies in the conception of the
vital mechanism one is trying to represent. This process of formulation,
understanding and simplification underlines our basic line of approach.

Now there follows the usual preview. For this paper we will focus on:

a) A derivation of the Ricker stock-recruitment relationship from first
principles (§2).

b) The basic model for length-structured, continuous-time dynamics
(883-5).

c) An example of a general procedure to calculate production, incor-
porating more precise physiological information (§6).

d) Outlook (§7).

2. RICKER'S FORMULA AND CANNIBALISM

Now we set out to work out a concrete example in some detail, in
order to illustrate the program outlined in §1.

One of the factors that make for the difference between birth rate
and actual recruitment rate is, of course, predation at an early stage
of the life cycle. We are going now to examine an idealized model of
this phenomenon and use it to derive the well-known relationship of
Ricker [4].

Let us write the dynamical equations for the prey in the age-structured
format:

dn(a,t) On(a,t)
5 + e = —pu(a,t)n(a,t). (1)
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Here n(a,t) is the density of population per class of age and p is the
mortality rate, as usual.
Assuming a Lotka-Volterra-type interaction, we have

u(a, t) = v(a)p(t) (2)

where 7(a) is the age-specific mortality coefficient and p(t) is the density
of predators.

The vulnerability of the prey is thought to differ from zero only for
0 < a < ¢, with € small. Our idealization consists in letting € go to zero,
without changing the global intensity of predation 6 (defined below).
This is appropriate for egg-eating cannibals, and it is nea. also in that it
avoids the introduction of a multiplicity of parameters. In mathemati-
cally pedanti- terms, we choose for v a é-convergent net. We can avoid
the use of é-function argunients by passing to the limit carefully. We set

Aa) = =¢(2) (3)

where ((z) =0 unless 0 <z < 1.
We denote 6 := fol ((r)dr = fof ¥(a)da, the intensity of predation.
Suppose now that we follow a “cohort” of neonates submitted to the
mortality given by (2) and (3):

n(a,t) = b(t — a) exp (—/: L(Z/E-)-p(t— a+a)da> .

Here &(1) is the birth rate, as usual. Taking limits for e | 0 and a | 0 (in
that order!) we get
n(0+,1) = b(t)e 971, (4)

"This is a most important formula: it gives the recruitment (survival)
rate as modified by early predation. It is amazing how the first pro-
ponents of models of newborn predation [5,6] failed to derive such a
relationship. They simply wrote down a rate of prey disappearance of
the form b(¢)p(t). Small wonder that sometimes recruitment becomes
negative. Small wonder also that they found a destabilizing effect of
this kind of predation, when nature and more serious models [7] point
in the opposite direction (the mistake found its way into the textbooks:
see [8]).

Now, suppose that we have cannibalism, so the predators are the
adults themselves. Suppose further that we are in a stationary age
distribution, so b(t) and p(t) are proportional to the total number of fish
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N(t). If reproduction occurs in a single “pulse”, the adult population
has no time to age nor to die in the meanwhile. Then we get the following
stock-recruitment relationship:

AN = aNe N, (5)

This is the first mathematical deduction of the Ricker formula that we
are aware of. It has been pointed out by Ricker himself [4, p. 281] that
it works well for cannibalistic species; but heterofore the link was not
formally establ’shed. (Cannibalism is perhaps not the only mechanism
which produces a Ricker-style curve; scramble competiticn could yield
the same result.)

In conclusion, a simple production model (at the stock-recruitment
level in this case) has been justified by a calculation that takes place
in the realm of structured population models. That occurrence will be
characteristic of our approach.

A word of caution: Equation (5) cannot be used in a simple-minded
way for continuously spawning stocks.

Equation (4) does not tell us the whole story. There is a consistency
condition to Le met. Going back to (2), we see that the number of prey
eaton by predator per unit of time is

(t)= [ (an(a,t)da (©)
Let us study the limit of (6) when ¢ | 0 by using (4) and (3) again:
1 o
c(t) = /0 ((o)b(t — eo) exp <—/{; C(T)p(t — €0 —eT) d‘r) do;
leil%l c(t) = b(t)A ((o)exp <-—p(t)/0 ¢(r) d‘r) do

—@-ex - ’ T)dr 0=M — e~0r(t)
= 23 exp (=500 [ )d)l SB(1= o),

Indeed the right hand side equals decline in population density, at time ¢,
per unit of time, due to early predation, divided by the predator density.

The dynamics of a cannibalistic population becomes automatically
nonlinear. If the effective number of predators is

r(t) = /0°° k(a)n(a,t)da
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where k(a) is the age-specific propensity to cannibalism, we get from (1),
instead of the usual linear Volterra integral equation for b(¢), the follow-
ing nonlinear system of Volterra equations:

b(t) = /Ooo b(t — a)B(a)e=P(t=) exp <-— /0 u(a')da') da,
p(t) = /Ooo b(t — a)k(a)e-"P(‘—°>exp<- /0 u(a')da') da.

In both formulae, v(a) represents a “natural” mortality rate that we
have to add at the right hand side of (1) and f(a) is the “maternity
function”.

We will not pursue the matter further here because equations (7),
being based on age, are not easily amenable to include the positive
effects of young consumption on growth and fecundity of adults.

Cannibalism may happen between the juveniles themselves and then
the positive effects just mentioned may become very important. This
seems to be the case for tuna [9]. We shall deal with this subject below.

()

3. LENGTH INSTEAD OF AGE

We will be using length-based models or weight-based models, which
are almost (but not quite) equivalent. The use of this kind of models,
instead of the good old age-structured models borrowed from demogra-
phy, may surprise some. But fishes are not endothermic animals whose
internal environment is so stabilized that ageing and development are
mainly determined by inner gauges and clocks. In cold-blooded animals,
as in many plants, development is poorly correlated with calendar age
and external environmental conditions are all-important. Perhaps more
to the point, statistical data on tropical fisheries are given in terms of
length; indced, fishing gear operates with respect to length. There is at
present no cheap or reliable way to measure age, indeed this is one of
the objectives of the CRSP. The more subtle reason is that, as we shail
verify in the next section, length-structured models are more informative
that age-structured models.

4. THE VON BERTALANFFY EQUATION REVISITED

According to the philosophy explained in I, before we set out to sys-
tematically introduce our length (weight) based models, we have to look
at the life history of the individuals.

1. Food intake. The ingestion of food by an individual fish of length {
and weight w (w = [* in suitable units) at food density z may be taken

f@)I = f(z)w?
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where

bz

a+z’

f(z) =

so f(z) — 6, f(z) ~ %:1:.

r—o0 r—0
This form for f is Holling's formula [10], which is based on satiation and
handling time considerations and is empirically well established. The 2
dependence above is due to the fact that digestion rate scales with the
surface area of the digestive apparatus.

2. Growth. Part of the energy from the ingested food is channelled
into maintenance, part is channelled into growth. So we have, assuming

isometric growth:
— = —(f(z)w*’° - Aw 8
= () ) ®)
where 7 is an efficiency conversion factor of food units into weight units,
and A is a maintenance parameter. Assuming that the right hand side

is positive, we would get

di _ dl dw
dt  dw dt
ol 1
= gw™/* ;(f(x)wm —w) = (@) = \) =i g(4z) > 0.

Let us call /; the length at the time of birth, #y:
[(tg) = 1.
If food conditions remain invariable during the fish lifetime, we get
I = Leo(2) + (I — Loo(z))e~F(t=t0) (9)

where k = A/3n, Lo, = f(z)/A. This is the celebrated von Bertalanffy
equation. Note that the maximum length depends on the availability of
food.

3. Reproduction. So far we have left reproduction out of account. Re-
production drains a lot of energy from the parents (think of the salmon!)
and that has to be reflected somehow in the growth function g.

The usual solution [10] is to say that a constant fraction of the food
intake, (1— &) f(z)w?/?, with 0 < & < 1, is channelled into reproduction.
This way, we have the same equation (9), where Loo(z) = f(z)/3kn is
replaced by

f(z)

Loo(z) = Sk (10)
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There being no observe! change in the feeding rate, nor a noticeable
deviation from the law of growth at the onset of the maturity, we will
assume that equation (9), with L, given by (10), is valid for the entire
lifetime of the fish, under constant environmental conditions. Presum-
ably, the (1—«) f(x)/3kn portion of the energy intake serves the building
of the reproductive apparatus.

There are some paradoxes involved here, that will be taken up par-
tially in §6. For the time heing, our sticking to this particular version of
von Bertalanffy’s law rewards us with a precisely determined form for
the length-specific maternity function B(l;z). Let I, be the length at
which the 4sh mature (we are here considering models in which matu-
rity happens in a “knife-edge” way, rather than fuzzily, a questionable
assumption, to be sure). We have

. ifly <Il<I,
,3( iT) = { 1_(]_ — Kj)_f(;z:)l2 ifl,, <1< Loo(x).

LWy

(11)

Here wy is the weight of a newborn and we are supposing that food
supply is enough for reproduction to start. Note that Diekmann and
Metz [10] write (ww;)7(1 — k) f(z)I? for the last part of the equation;
but there is no good reason for taking « # 3.

5. THE BASIC MODEL (CONSTANT ENVIRONMENT)

The dynamical equation is:

0

Sonll, ) + gl 2n(l, 1) = ~pun(l, ). (12)

We shall taxe the mortality rate p to be constant. It is proven in I
that the solution of this equation tends asymptotically to a stationary
length distribution, with exponential growth or decay. Let us find this
distribution. We insert n(l,t) = ¢({)e™ in (12) and we find

¥(1) = C(i - Lop) !

that is:
N
Lo -1 ) (13)

L) = () (m

In this and subsequent formulae it is tempting to take I, = 0, given the
fact that length at birth is very small anyway. It will be seen later that
this would be a mistake.
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Figure 1. Graph of n(s;z)
To get r, still unknown, we use the boundary condition:
b(t;z) = g(ly; z)n(ly, t), where

Loo(z)
b(t; z) :=/l Bl z)n(l,t)dl.

Inserting n(l,t) = 9(I)e™ in the appropriate places again, we obtain

3(1 -« Leo(2) r
m(r,z) = /\wb(Lfo(I) —)fzf;iwk /z FLoolz) =)l =1
(14)

This is to say, r solves the “characteristic equation” 7(s,z) = 1 with the
functional form of 7 given by the expression above. This function may
be given a more explicit form by integrating (14):

e) - RO (Tale)
T Awp p+s
2L oo(z)(Loo(z) ~ 1) pthts (Loo(z) = 1p)? | ut2ess
B p+k+s 4 * p+2k+s 4 ) (15)
where
_ Loo - lm

T Leo—1p "

The result is valid if s > —p. Moreover, 7(s; ) is a strictly decreasing
and convex function of s, and lim, .., 7(s;z) = 0. Then the equation
m(s;z) = 1 has a unique simple solution, which furthermore may be
approximated easily by Newton’s method. Have a look at Figure 1.

26



We have:
rz0 <= 7(0;z) =1 (16)

That will be readily interpreted in biological terms. Let y be defined
by Loo(y) = Im. Then clearly lim; ., 7(s;2) = 0 if s > —p and then
r — —p. Thus there is a critical food density defined by #(0;z.) = 1,
such that -~y <r<0ifz<z.and C <r < r, if z < z., where r, is
the solution of 7(s; +00) = 1.

There is an alternative way of solving (12), by introducing the growth
curve (9). Note that the age of the fish is given by

1 Lo —1y
Changing the variables in (14), we are led to
1= 3R “)f(‘”—)/ P(a)e= (w472 da, (18)
wy A am

where a,, is the age of maturity. It is clear now that the right hand
side of the equation is essentially a birth rate: 7(0;z) is the number of
offspring that a newborn individual is expected to bear.

It is also possible to interpret the characteristic equation (14) in terms
of sustainable yields: if the harvesting rate equals precisely the natural
rate of growth, the population size should remain constant. Then =(s; x)
is the expected number of offspring per individual if we harvest the
population at the rate s.

6. ALDENBERG’'S PARADOX AND PRODUCTION RATE

There is a paradox noticed by Aldenberg [11] implicit in models that
use a continuous growth curve. The sudden appearance of neonates
should be accompanied by a negative jump in mean individual weight
of the parent cohort: every reproduction is a fission. What we did,
tacitly, with our early assumption, was to assume that reproduction
proceeded by all individuals in the population contributing continuously
infinitesiral shares to a common pool, from which, by some miracle,
neonates were produced.

The question is important for production theory, because it is easy
to see that classical (Allen’s and Ricker’s) production models, which do
not take into account the foregoing, tend to overestimate production.

Let us write now the “correct” equation, replacing length by weight
as the independent variable:

on  J(gn)

5.}. ke —pn — fn + B(w + wy)n(w + wy). (19)
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This should be compared to equation (12).

If we are not willing to forsake equation (12), we have to look for a
way out of the paradox.

One possibility is to derive a limiting form of equation (19) when
wp -+ 0. By a Taylor development we readily arrive at equation (1%),
with ¢ replaced by g — 8, which we define as ﬂ~(w) = limy, —o f(w)ws.
"This is most reasonable: the energy substracted from growth is chanelled
into reproduction. As we took this into account when we wrote down our
growth curve, we might think that we are on safe ground. However, it is
clear that in: the limit wy — 0, the number of neonates becomes infinite.
TLis is one of the reasons that prevented us from putting wy = 0 in §4
(another reason will be apparent in §7). This “population explosion”
could be countered by an inhnite mortality, but this is too artificial.

More to the point is the following result: the rate of production in the
models governed by (19) is the same as that in the models governed by
(12), provided that g is adequately corrected.

PROOF: Multiplying equation (12) by w and integrating, we get

Yo d(gn) , Y= On Weo _dB
-~/ W dw—/ watdw-i-/ w,undw—-E-i-E.

wy wy wy

Here B(t) = fu':m wn(w,t)dw is the population biomass and the term
E stands for the rate of biomass elimination through mortality. We
conclude that the rate of net biomass production is

p= [ 0%

we ow

dw. (20)

(Now it is a simple exercise to calculate the rate of production of biomass
per unit stock, assuming stationary distribution of weight, using g(w)
given by (8) and also formula (13). The measured “snapshot” of number
over weight distribution should serve for estimating the paramecers in
these formulae).

Let us continue the proof. Integrating by parts, we get

Weo

P = wyg(ws)n(ws, t) + / g dw (21)

ws

which distinguishes clearly the formation of reproductive material from
the individual’s growtl.

We turn now to Aldenberg’s equation. The rate of production is now

=—/ °owa(gn)dw—/ oowﬁndw

wy Ow ,

+f " wBw + wp)n(w +ws, 1) d.

wp
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As B = 0 for w < 2w, the second term on the right can be written as
—f;f;: wpn dw, whereas the third term is f;‘;‘:(w — wyp)B(w)n(w, t) dw,
so they add up to —w, j;f:: fn dw.

We get, finally:

Woo

P = wyg(wp)n(ws, 1) +/ (g — wpfB)n dw (22)

wy

which is (21), provided that we redefine g suitably. We conclude that,
from the practical point o1 view, equation (12) is safe to stick to. I

7. INTERACTIONS

There follows a list of problems that could be readily handled with
the tools developed so far.

Of course, the hypothesis of constant environment is not fulfilled in
practice. We are interested precisely in harvesting populations which
keep dynamicai equilibria with their surroundings. Part of our purpose
is to look for these equilibria for different realistic assumptions about
recruitment, develcpment and reproduction processes.

a. Competition for food resources. We intend to attack equation (12)
coupled to the equation for the resource:

3_;‘ = k(z) —f(z)/l2n(l,t)dl.

Here we expect that k(z) > 0 for 0 < z < z, and k(z) < 0 for z > z,:
we may suppose that k(z) = « -- Bz at least in the vicinity of z,.

Here time-scale arguments must be employed to simplify the problerm:
it is reasonable to assume that the relaxation time of the resource is much
shorter than that of the population under study, so we can treat the
(slow) population variables as constants on the time-scale of the (fast)
resource variables and the resource variables as being permanently in
equilibrium in the scale of the population vaiiables.

b. For different harvesting rates, we obtain different equilibria in (a).
We calculate then the production rate (20), in order to deduce sustain-
able yields.

c. Intrajuvenile cannibalism. Let us suppose that the coincidence be-
tween the vulnerable and cannibalistic classes is exact. We sketch a
simple model based on age. Reasoning as in §2, we have:

n(04,1t) = b(¢)e ()
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where p(t) is defined as j;; v(a)n(a,t) da before going to the limit.
Now we have a consistency condition:

(t) = %(%(1 _ 70

which may be solved to give p in terms of b. Then we write the renewal
equation:

b= / " Bayn(a)da = /0 " Blayn(04+)e™* da
=/ooﬂ(a)be_9p(b)e—uada (23)
0

which, interestingly enough, turns out to be nonlinear. We can examine
the dynamical properties of (23) and then attack the same problem with
length base-l models, where one may follow the energy budgets, in order
to compare results. We think that a justification for the use of the
logistic model might emerge from this.

It is interesting to note that competition for safe places 1 the early
life stage turns out to be mathematically equivalent.

d. There is evidently an energetic tradeoff between birth weight and
Sirth rate. From evolutionary considerations, the precise relation should
be obtained by maximizing r (with respect to w;). The resulting rela-
tionship could be tested empirically and eventually lead to elimination
of some parameters of the model (now we see again that putting wy, = 0
is not really such a good idea). From evolutionary considerations also,
the negative correlation between Lo, and k alluded to in (12] may find
an illuminating explanation.

e. One might try to apply Laplace transform methods to Aldenberg’s
equation, looking for asymptotically stationary solutions.

f. A richer model can be developed, introducing sterage of reserves as a
second dependent variable, and allowing for stochastic variation of the
environment.

We also note that the formalism lends itself to the study of chemical
stresses caused by pollution.

REFERENCES

(1] D. Ludwig and G. J. Walters, Canadian Journal of Fisheries and
Aquatic Scieace 42, 1066 (1985).

30



[2] B. Rothschild, forthcoming book (1987).
[3] D. A. Roff, Bioscience 36(5), 316 (1986).

[4] W. E. Ricker, Computation and Interpretation of Biological Statis-
tics of Fish Populations. Department of the Environment, Fisheries
and Marine Sciences, Ottawa, 1975.

[5] M. S. Gurtin and D.S. Levine, Mathematical Biosciences 47, 207
(1979).

[6] J. C. Frauenthal, sbidem, 63, 87 (1983).

[7] F. van der Bosch and O. Diekmann, IMA Journal of Mathematics
Applied in Medicine and Biology 3, 53 (1986).

[8] J. C. Frauenthal, in Mathematical Ecology, T. Hallam and S. Levin,
eds., Springer, Berlin, 1986.

[9] W. W. Fox, private communication (1986).

[10] J. A. J. Metz and O. Diekmann, in The Dynamics of Physiologi-
cally Structured Populations, J. A. J. Metz and O. Diekmann, eds.,
Springer, Berlin, 1986.

[11] T. Aldenberg, ibidem.

[12] V. F. Gallucci and T. J. Quinn, Transactions of the American Fish-
eries Society 108, 14 (1979).



