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The present working document contains the initial papers of a series 
whose ultimate purpose is to provide a realistic basis for a fresh appraisal 
of both the surplus production and the dynamic pool approaches to 
fishery yield analysis. 

The main idea is to tighten the conceptualframework of the "trinity" 
of recruitment, survival and growth, uncovering links among the three 
sectors by using recently developed physiologically structured models' 
methodology. There are good reasons to argue that this endeavour is 
appropriate and suitable for understanding tropical fisheries. 

Paper I is a plain introduction to the general procedures for building 
physiologically structured models and the basic mathematical tools and 
results, mainly in the spirit of the Dutch school. In Paper I! we lay out 
our strategy: to introduce and solve structured models in order to eluci
date the underlying assumptions of simple production models. The case 
is made again for the use of size-structured models in tropical fisheries. 
Such a strategy demands a fair amount of work and the resolution of 
some paradoxes (cf. the treatment of Aldenberg's paradox in Ii, §6). 

The decision to try to apply this type of modelling to stock-assess
ment problems in the context of CRSP was taken during a visit of 
J. M. Gracia-Bondia to the Chesapeake Bay Laboratory at Solomons 
in May 1986. These were gratifying, "ntense days of fecund discussions. 
We include here the memorandum then written with Brian J. Rothschild 
because we believe it keeps its programmatic value. Paper I was drafted 
in April 1987 and extensively revised in February 1988. Paper II was 
written in May 1987 and underwent some slight revisions later. 

We gladly acknowledge our debt to many people: this is a kind of 
collective work, as it should be. Cluney Stagg provided much needed 
early encouragement at Solomons. Vincent Gallucci, Pat Sullivan and 
Han Lin Lai of Seattle provided instructive criticism. Manuel Murillo 
of CIMAR dexterously helped to keep alive our interest throughout. 

Jos6 M. Gracia-Bondia thanks Odo Diekmann for inviting him to the 
Amsterdam meeting on the dynamics of physiologically structured po
pulations in January 1988; to him and to Hans Metz also for a pleasant 
stay at the Centrum voor Wiskunde en Informatica at Amsterdam and 
the Institute of Theoretical Biology at Leiden. Thanks are also due 
to Andre de Roos for useful discussions. Last, but not least, Jerry Ault 
of Miami went with us through every paragraph of Paper II, perpetually 
forcing us to strive for greater clarity, precision and breadth. 

Jos6 M. Gracia-Bondia and Joseph C. V~rilly 
San Jos6, February 1988 



Memorandum: On a class of mathematical models 
suitable to describe the Biodynamics of the Sea 

BRIAN J. ROTHSCHILD AND Jost M. GItACIA-BONDfA
 

Center for Environmental and Estuarine Studies,
 
University of Maryland, Solomons, Md., USA
 

CIMAR and Escuela de Matem~tica,
 
Universidad de Costa Rica, San Jos6, Costa Rica
 

1. One of the requirements for an adequate theory of the biodynamics of 
the sea is that it should provide an explanation for the relative stability 
of marine populations. We do not deny, by any means, that large fluctu
ations of marine populations are sometimes observed. But, the purpose 
of the theory is precisely to relate these fluctuations to the fluctuations 
(periodic or otherwise) of the environmental parameters. We will tend 
to reject a priori,on these grounds, models which give unlimited growth, 
rapid decay or unwieldly oscillations, in constant environments. 

2. It is a general principle that linear equations with constant coeffi
cients are (almost) always exactly solvable and (generically) unstable. 
This is because the behavior of their solutions ;s governed (for t -* c) 
by the highest lying eigenvalue. If it is negative, we will ultimately have 
decay (after some oscillations perhaps). If it is positive, we will have 
unlimited growth. This is also true of the more sophisticated models 
that we are about to propose here: under fairly general conditions it 
is possible to prove that the "spectrum" of a linear operator (see be
low) has a highest lying eigenvalue, that the age structure incorporated 
in our model becomes stationary, but the total number of individuals 
undergoes unlimited growth or decay. 

Of course, in a given problem, the highest lying eigenvalue could be 
exactly 0 and the number of individuals when t -* c approaches a 
constant. But there is no generic stability: any change of the (physical, 
biological) parameters describing the problem, from which the eigenva
lues are derived, will send the model down dangerous tracks. We cannot 
attach significance to this ocurrence. 

There is another possible "trick", that is, to modulate the changes of 
the environment in such a way that the oscillations of the population are 
maintained within prescribed limits. We are now talking about linear 
equations with variable r-oefficients. This could be useful in specific 
situations. But, according to the general requirement outlined in §1, 
we have to conclude that linear models are not suitable to describe the 
biodynamics of the sea. 
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3. Of course, we would expect a priori that a successful model of the 
biodynamics of the sea be a nonlinear one, because complicated feedback 
loops are an important characteristic of any complicated ecosystem. But 
we have to put some conceptual limits on the degree of complications 
that we are willing to consider, if we are to obtain any insight at all. 

It should be possible to construct some general "statistical-mechanics
like" model for the entire ecosystem that we are studying, giving us some 
confidence that the system as a whole will function as a "reservoir" (in 
the thermodynamic sense) with respect to any one of its components. 
That is to say, we are neglecting the feedback of the fate of the species 
of interest on the whole system. To articulate this more concretely, 
consider predation, for example. The population of predators should be 
relatively insensitive to what is going on for the given particular species 
of interest, because that one is only a minute fraction of the pooled 
prey population; predators may "switch off and on" between possible 
kinds of prey. In another language, we would say that, even if the 
distribution of a given function changes with time (and we are bound to 
examine these phenomena, if we want to test asyraptotic stability), the 
whole system, being composed of - large number of species, will remain 
in "equilibrium". Let us take that as a plausible assumption for the 
moment. From our point of view, the system as a whole is described by 
a number of parameters which couple with the physiology of the species 
in question. There is no reason to assume (and no interest, as we have 
seen) that this coupling is linear in the number of individuals of the 
species under consideration. Also, the parameters could vary with time. 

4. Admittedly, the description of the "state" of a population merely by 
the number of its individuals is too crude. Furthermore, it makes for a 
poor connection of population dynamics with the other levels of biolo
gical science (such as the study of the behavior of individual organisms 
and even of systems of organs), because in general it is difficult to justify 
the ad hoc mathematical terms on a biological basis. 

Also, if we are to recognize structure (age, length, etc.) in the given 
species of interest, we have to avoid ordinary differential equations, be
cause they describe instantaneous transitions between life stages and are 
in this sense self-defeating. As a matter of fact, with ordinary diffelential 
equations we are not able to follow the histories of particular individu
als and, as a consequerice, there is no clear way of maintaining adequate 
bookkeeping for the populations through the different stages. The whole 
point of having different life stages is lost. 

5. The "continuum distribution pcpulation dynamics" models are flex
ible anough to incorporate the relevant pbysiological information which 
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may be available. 
Let us describe the models. The physiological state of each individual 

is represented by a vector, i.e., a point x in a state space. If we need 
n variables to describe a state, the state space is a subset E of R". It 
is important to appreciate that x might incorporate not only age, but 
length, weight, geographic location, gonad content, whatever we think 
is important. 

The individual trajectories are described by a differential equation: 

dx

T V(X). 

Of course, v reflects the influences that have affected the individual 
given its species, age, length, sex, ... We have not emphasized in the 
notation that v includes parameters relating the individual to the envi
ronment; if the latter is variable, v would depend on time as well. The 
description at the individual level is too detailed to be useful; we shall 
choose to describe the state of the population as a whole by a continu
ous distribution function (it would be perhaps more accurate to talk of 
a continuous density function) that we shall call n(x; t). The meaning 
is the following: n(x; t) Ax gives the number of individuals whose phy
siological state is described by a point of the state space inside a cube 
of volume Ax = Ax...Ax , centered at x = (Xl,... ,xn), at a given 
time t. 

It is clear that this is the same type of description that one finds in 
the kinetic theory of gases. The continuity equations of hydrodynamics, 
that we borrow, assure systematic bookkeeping: 

On 
T + div(nv) = births - deaths 

We recall here that the operator div, applied to an n-dimensional vector 
function ( - 8,) of n variables (xi,... , xn) yields:= A,..., 

. .oOx1 + 0 2 

At any time, the total number of individuals of the species of interest, 
with state in a given subset of D, say Do, is: 

N-o= n(x; t) dx. 
D2o 

We may see now (1) as a dynamical equation, which gives the evolution 
of n with time, provided that we specify D, v and the rates of birth and 
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of death corresponding to each value of x. Usually births will appear as 
boundary conditions. 

The description is deterministic, in the sense that the behavior of po
pulations is related to the (predictable) behavior of individuals in the 
state space. There is an inherent stochasticity related to the birth and 
death processes; we approximate it by describing these chance occur
rences in terms of rates. 

6. A better understanding of the flexibility of the model may be gained 
from some examples. 

i) Suppose that we take x to represent only the age a. In this case 
= = 1. Suppose furthermore that we know that the average fraction 

of fish which die during the time interval dt, at age a, is 7(a), and that 
the age-specific birth-rate is P3(a). Then (1) reduces to the "von Foerster 
equation": 

OnOn an + -7(a)n = 0On (2) 

which may be solved explicitly (in conjunction with the birth condition 

n(Ot) = / f (a)n(a;t)da 

and the arbitrarily given initial (t = 0) age distribution) to obtain n(a; t) 
at all times. This is done on pp. 63 and following of the book by Nisbet 
and Gurney and will not be rcpeated here. 

We remark that (2) is a linear equation and so the general considera
tions of §2 apply. 

ii) To illustrate the formalism, consider a population of monocellular 
beings which do not die, but divide into two identical cells when its 
"size" s is inside a given range. Let us call d(s) the rate of division. 
Then (1) gives: 

On(s;t) + a (v(s)n(s; t)) + d(s)n(s; t) - 4d(2s)n(2s;t) = 0. (3) 

In this case individuals "jump" instantaneously from one point in the 
state space to another; birth may happen "everywhere" and not as a 
boundary condition. 

iii) Let us look at more-to-the-point examples. Let us consider fish 
whose behavior in state space is described by two parameters, age and 
length. Then we have x = (a, l). We have, as before, d'= 1. Now the 

dt
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evolution of the length of the individuals with time should be related to 
the length already reached and-here is the coupling with the "external 
reservoir" -with the availability of food. 

We try to manufacture an example with plausible assumptions. First 
of all, the rate of food intake may be considered proportional to the 
area of the digestive apparatus, and then to 12. Second, let y be the 
perceived food density. The maximum food intake would be in principle 
proportional to y. Let us call a the constant of proportionality. If the 
food availability is very big, the fish could become satiated at the maxi. 
mum, so we model ingestion by a function that it is nearly proportional 
to y when y is small and nearly equal to a cznstant when y is large: for 
instance g(y) =ay . So we have: ingestion a y 1'.1 + y 1 + y 

The ingested resources are used in (i) maintenance, (ii) reproduction, 
and (iii) growth. We may suppose that maintenance is proportional 
to weight, and then to 13 . Let 6 be the fraction of ingested resources 
allocated to maintenance divided by the energy cost of growth. We have, 
finally: 

d13 
_ Say 12 - ll 312 dl = 12 - p13 ; or 

dt I + y dt 1 + y 
dl bay P I

dt -3(1 + =: f(l; y) (by definition).
 

We must keep in mind that y is the perceived quantity of food, which 
is a function of physical environment (turbulence of water, temperature, 
irradiance, ... ) as well as a function of the real density of food z. 

The continuity equation gives now: 

-'-n(a,l;t)+ -n(a,l;t)+ - (f(l; y)n(a, 1; t)) = -y(a, l)n(a, 1; t). (4) 

In order to solve it, we have to specify births as boundary conditions, 
presumably relating them to age and length, as above; we will not go into 
that now. As before, 7 is the mortality rate, which depends mainly on 
age a for natural mortality and on length I for mortality due to fishing. 

Equation (4) still seems linear in n. But we need not consider y to be 
merely a given external parameter, because y is dynamically dependent 
on consumption. This can provide the nonlinear term we are looking 
for. 

7. To summarize, the continuum distribution population dynamics are 
appropriate to incorporate any relevant biological information that we 
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may happen to have about the species under consideration; that is what 
we have attempted to s1how, rather clumsily, with the previous examples. 
This is perhaps the main advantage of method; practical biologists may 
be apt to feel that this kind of models fits better to their concerns than 
the usual ad hoc machinery of population specialists. 

On the other hand, it is indisputable that we are pushing mathema
tics for biology here to a new degree of sophistication: as the spaces 
where distribution functions n(x; t) "live" are infinite-dimensional, we 
are bound to use "functional analysis", the type of analysis charac
teristic of the twentieth century, in order to study deeply equations 
like (1). The Hille-Yosida theorem of semigroup theory gives the es
sential tools for that in the linear case but the nonlinear one is, as usual, 
much more difficult. It appears to be philosophically wrong to expect 
great breakthroughs in the biodynamics of the sea without developing 
a mathematical panoply suitable for treating the real-life complications 
in a theoretically realistic way. 

8. Realistic models should be elaborated to take account of the follow
ing: 

i) Other physiological traits of interest. 
ii) Specified assumptions about food consumption and its relation to 

environmental characteristics; also to birth and mortality rates.
 
iii) Effects of variable environments.
 
iv) Change of feeding habits during the life history of a species.
 

9. Finally, we should pay attention to the possibility of justifying the 
idea outlined in §3 if not on a first-principle basis, at least in a self
consistent way. 

Bibliographical Note. Chapter 3 of Ni~bet and Gurney's book Model
ling FluctuatingPopulations(Wiley, New York, 1982) is concerned with 
single-species models with age structure. However, it does not explain 
that its "von Foerster equation" is an instance of the continuum equation 
of hydrodynamics: the fact that the state space could contain other 
parameters different from age is not sufficiently stressed. When it comes 
to seek regulatory (non-linear) effects to stabilize the populations, it 
postulates a relationship between the total number of individuals and 
the birth and death rates very different in spirit from our treatment of 
food availability. 

A good place to look for the appropriate methodology is Nieuw Archief 
voor Wiskunde 4 (2), 1984. 
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The Significance of Physiologically Structured
 
Models for Fish Stock Dynamics. I
 

JOSEPH C. VA'RILLY AND JOSE' M. GRACIA-BONDIA 

CIMAR and Escuela de Matematica,
 
Universidad de Costa Rica, San Jos6, Costa Rica
 

1. GENERAL CONSIDERATIONS 

The classical models of population dynamics are of the lumped type: 
all individuals are treated as identical units and it is hoped that the 
gross features of the population under study are captured in a very 
small number of global parameters. 

In 	opposition to lumped models, structured models purport to take 
account of differences among individuals of a given population-mainly 
with respect to developmental stages-in the hope of a more detailed 
confrontation of the models with real data. 

At first sight, the physiologically structured models we treat below 
appear full of promise at the i-level (see §2); practical biologists may 
well feel that this kind of models fits better to their concerns than the 
usual opaque ad hoc machinery of "population mathematicians". 

However, any modelling methodology will entail drastic simplifica
tions, compromises made in search of mathematical tractability and, 
indeed, sources of insight. Before we decide to apply structured popu
lation models to a given class of fisheries, we have to critically examine 
the worth of this effort. 

We can do no better than to refer to the classic of marine biology [1]. 
Hardy vividly illustrates there the consequences for the fishery of differ
ent age structures in the stock. This exercise was done for populations 
in a steady state; it is clear that these differences in structure are more 
significant in transient modes of the population. 

This first paper seeks only to delineate the basic framework and fun
damental theorems pertaining to a population dynamics theory which 
incorporates the description of dynamical, ecological processes at the 
individual level; detailed specific models and applications are dealt with 
in subsequent papers, referred to as II and III. Here we include: 

a) 	An introduction to the state-representations, at the i-level (§2) and 
the p-level (§3). The basic partial differential equations of the theory 
are derived in §3. 



b) 	A detailed review of the simplest case of age-structured populations, 
including full solutions and a sketch proof of the "ergodic theorem" 
(§4). 

c) 	An analysis of the size-structured case, which, we believe, is of di
rect relevance for tropical fisheries. The concept of age-equivalent 
representation is introduced and a generalized ergodic theorem is 
discussed (§5). 

d) 	Considerations of stochasticity in the variables and parameters used 
in the description of the i-space and some mathematical questions 
are touched upon in §6 and §7. 

2. THE i-STATE REPRESENTATION 

To obtain a measure of biological realism in physiologically structured 
models we must work at the level of the individual description, or i-state 
representation. The individuals are considered as input-output systems, 
the input being given by the interface with the environment. The vari
ables employed to describe the state of the system may be very diverse, 
depending of the focus of interest in our study: age, size, geographic 
location, sex, epidemiological state, concentration of toxic chemicals, 
gonad content, ... , whatever we think is relevant. 

The larger the number of variables introduced, the greater the penalty 
we will have to pay in terms of mathematical and computational difficul
ties. Our variables should be judiciously chosen so as to minimize their 
number, with the constraint that the following necessary qualifications 
should be met: 

i) 	The i-state at a given moment should be completely determined by 
the i-state at a previous moment and the intervening environmental 
history; 

ii) 	 The "behavior" (output) of the system at time t should be deter
mined by the values of the variables characterizing the i-state at t. 

As an example, if we can argue that the offspring production, feeding 
rate, and probability of dying of an individual fish, all depend just on 
its size (and on the current environmental conditions), then size alone 
is enough to describe the i-state. 

We shall denote by D the space of the possible i-states. In practice, 
D will always be a subset of Rk, the ordinary k-dimensional space. Let 
us denote by x a point of D. The models we have in mind are determin
istic: two individuals with the same value of the system variables and 
experiencing the same circumstances will follow their life histories in a 
predetermined, indistinguishable way. It goes without saying that this 
assumption (called the "strong" form of the i-state description) restricts 
the class of populations to which the present modelling philosophy can 
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be reasonably applied. We will consider in §6 how the deterministic con
dition can be relaxed; as it stands for the moment, it means in practice 
that the individual 'trajectory' is governed by a differential equation: 

dx 
-= v(X;t).(1) 

Here v reflects the influences that affect the individual, given its 
present state; if the environment is variable, it will depend on time. 

3. THE p-STATE REPRESENTATION 

We have then the picture of a multitude of identical individuals, flow
ing inexorably in their state space forward in time. We must also incor
porate birth and death, which are inherently random processes at the 
i-level. The point, however, is that we want to address questions to the 
model at the population level: such as, how much fish biomass is present 
at a given t between certain ages; what is the probability of dying in a 
given period for fishes of a certain size; what is the expected offspring 
of our population; and so on. In order to do so, we define the p-state as 
a frequency distribution over the space D of i-states: this is the ideal 
counterpart of the natural population under study. We make implicitly 
the assumption that the numbers characterizing the population are very 
large, so births and deaths-and other stochastic "jumps" in the i-state 
space, see II, §6-play a role in the p-state dynamics only through their 
averages. 

It is clear that this is the same type of description that one finds in 
microscopic theories of fluid motion. One is not interested in following 
the motions of particular molecules or microscopic parts of the fluid, but 
in the properties and dynamics of the whole. However, and this is the 
point we want to emphasize next., once the "microscopic theory" (i.e. 
the workings of i-state level system) is specified, we have no freedom of 
choice in regard to the p-level dynamics. In fact, that dynamics is given 
by the hydrodynamical continuity or mass balance equation, assuring 
automatic bookkeeping (in this picture, births can be thought of as 
"sources" and deaths as "sinks"). 

From the mathematical point of view, the simplest available deduc
tion of our transport equation uses the Gauss divergence theorem: let 
n(x; t)dxl ... dXn give the number of individuals whose physiological 
state is described by a point of the state space inside the hypercube of 
sides (xl,x, + dxl;X2 ,X 2 + dX2;...;X,,X + dxz,), at time t. Then n 
represents a p-state. Let D0 be a subdomain of E) with (a piecewise 
smooth) boundary D07. At each point of 09 0 we may identify the flux 
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vector 'p: the number of individuals which are transported across the 
boundary at point x E OD0 per unit of "area" on ODo and per unit of 
time is v •(p, with v the outward pointing normal at x. 

Clearly, the total number of individuals with state belonging to Do at 
time t is 

Nvt)( n(x; t) dx.t 

Conservation of the individuals forces is to write (we suppress argu

ments of functions in the formulae that fohow): 

d ndx +]v .pd = 0 (2) 

where da denotes measure of "area" on aDo. 
Gauss's divergence theorem states: 

l v .do, = f divWdx. (3) 

So we find: (O1 ndx + 'Do
div~dx= +div )dx =0. 

Since Do is arbitrary this implies: 

On 
0

T+ div p = 

which is the desired equation. 
We note that this way of ieasoning is the equivalent of the Eulerian 

approach in fluid dynamics theory (see A.III.3 in [2]). We prefer it 
to the alternative Lagrangian approach because it remains valid when 
there are random components in the i-state movement (as will be briefly 
considered in §6). Straining the fluid dynamics analogy a bit, it means 
that the argument is still good for a kinetic theory of the microscopic 
motion. In the present deterministic framework, one has simply (P= nv, 
v being the same as in (1). 

The less mathematically-minded reader in referred to [3, Chapter 5] 
for a lower-brow treatment, which is of course tantamount to an intuitive 
argument in support of (3). 

If we take into account the probability of death, we end up with: 

On + div(nv) = -in, (4) 
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where /(x; t) is a mortality rate which is always strictly positive. We 
suppose that births occur only at the boundary of the state space, so 
they enter the the6ry as a boundary condition for (4), which is our 
fundamental dynamical equation. 

As it stands, equation (4) is linear, which is an important mathe
matical asset but, as recalled in the previous memorandum, a biological 
liability. Nonlinearities can be introduced via the feedback coupling of 
the environment with the system. 

4. AGE STRUCTURE 

Chronological-age-dependent population dynamics models have been 
around for a long time. Although they are not directly relevant in our 
context, they are important as giving the simplest examples of structured 
models, and also for theoretical reasons, as will be explained in §5. This 
theory started in the classical paper by Sharpe and Lotka [4] under the 
guise of the linear renewal equation (10). The ergodic theorem was dis
believed by their contemporaries. Equation (5) was written down first 
by McKendrick [5] and forgotten; it was rediscovered (33 years later!) 
by von Foerster [6], whose name it usually carries. The determinis
tic linear theory embodied in equations (5) and (10) forms the basis of 
mode:n standard human demography [7,8,9]. Sinko and Streifer [10] in
troduced size jointly with (chronological) age; Oster and Takahashi [11] 
considered variable (periodic) environments in some detail. A mathe
matically heavygoing book, working rigorously with nonlinearity in the 
pure age-dependent context is [12]. For the generalization of the ergodic 
Sharpe-Lotka theorem, one should mention [13]. The general theoreti
cal framework is, as rightly argued by the main authors in [2], in statu 
na.,cendi. However, that book itself shows some signs of maturity al
ready in progress. 

Next we derive the main formulas of the standard theory of age
structured populations. We concentrate on the relevant ideas behind 
the formalism and refer for technical details to [14]. Let us denote age 
by a. As 11 = 1, equation (4) reduces to: 

On Ono--+ -T~+ /in = 0. (5) 

Let us suppose, for the time being, that the mortality rate does not 
depend on . If no(a) := n(a; 0) is the initial population, equation (5) 
has the solution: 

n(a;t) = no(a - t)exp (• fj (a - t + s)ds (6) 
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valid for a > t. It clearly represents the dying off of the original members 
of the population. To calculate the solution for a < t, we need to specify 
the birth rate b(t) = n(O, t). Let us give names: q(a), the birth kernel, 
is the expected number of offspring that an individual will beget from 
birth until age a; fl(a), the maternity function, is the mean number 
of offspring produced by an individual aged a; and F(a), the gurvival 
function, is the probability that an individual survive to age a. We have 
here 4(a) = (a).F(a) with .F(a) = exp (- fo p(a')da') and the renewal 
condition: 

jn(0; t) = b(t) = (a)n(a;t)da. (7) 

The remaining half of the solution to (5) is then: 

n(a;-t) = exp . )(a')n(a';/(a')da' t - a) da', (8)
nk,-ex ,I0)aaa 

valid if a < t. Note the compatibility condition no(0) = b(O). 
It is supposed that relevant p-outputs can be calculated from the 

p-state n, using appropriate kernels: 

F ==o1) f(a)n(a;t)da. (9)
 

Here, for example, f could denote the i-space feeding rate; F is then the 
total feeding rate, for individuals inside a given age-class represented by 
Do. 

The simplest example is t]e total population number 

N(t) = jn n(a; t) da. 

We have reached a formally complete solution of the linear problem 
for age-structured population in a constant environment. However, for 
many purposes an alternative approach is to oe preferred. From (7) and 
(8) it is clear that we can calculate any linear functional of the p-state, 
if we know the initial distribution no and cF r, solve for the birth rate b. 
This is indeed feasible: we clearly have frorn (C), (7) and (8): 

b(t) = j b(t - a)¢(a) da + g(t) (10) 

where g(t) is the rate of births into the population which are not daugh
ters of individuals born after t = 0: 

g(t) = I no(a)/3(a + t)'(a + t)da. 
t) F(a) 
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(It is instructive and left to the reader to derive (10) and (11) from 
first principles.) We write b = ** b + g, with * denoting convolution. 

Equation (10) is an inhomogeneous Volterra equation of the second 
kind (the argument of the unknown function appears as the limit of the 
integral) that can be solved by Laplace transforms: defining 

b(s) := e-stb(t) dt, ((s) := e-s'(t)dt, etc., 

we have, by the convolution theorem [15]: 

+ (10') 

so: 
SO 2 +.) 

1-0 

It can be shown that the expansion is convergent. We conclude that: 

b=g+g*+g* 0*¢+... 

The solution makes sense, as it easy to see that q • .-. • ¢ (n times) 
is the mean rate at which nth generation births happen. Uniqueness of 
the solution is guaranteed by Titchmarsh's theorem [15, 2.15, Sitze 11 
and 121. 

From here to the ergodic (Sharpe-Lotka, renewal) theorem it is just a 
short step. We start by removing the initial moment of the population 
to t = -co, so we have to solve: 

bmx 

b(t) =] b(t - a)O(a) da. 

Substituting a trial solution of the form b(t) = Cer", we find the 
equation: 

(r)= 1. (12) 

Now 0(a) > 0. This seemingly trivial observation implies that for s real, 
the Laplace transform is a (smooth) monotonically decreasing function 
with (+oo) = 0. Moreover, if, as usual, the Laplace transform is defined 
for Re s > a, and lim, 1, o(s) _ 1 (this last inequality will be true in any 
reasonable biological context), then (12) has a unique solution, called 
the intrinsic rate of naturalincrease associated with the birth kernel 0. 

The ergodic theorem asserts that r is greater than the real part of the 
remaining roots of (12). From this it follows that the birth rate and the 

13
 



population must grow or decay exponentially with a time constant I 

asymptotically reaching a stationary relative distribution. Moreover, the 
conclusion still applies under some suitable technical assumptions, if we 
reintroduce g into the picture. This was first proved rigorously and in 
full detail by Feller [16], and so ended the controversy surrounding the 
paper [4]. 

Note that q(0) < 1 4==* r < 0; (0) is the net reproductive number, 
th3 mean number of offsping that an individual is expected to bear 
during its lifetime (more on that in II, §5). 

We conclude this section with a remark: the integral (Sharpe-Lotk" 
form of the (McKendrick-von Foerster) partial differential dynamical 
equation exists even in the absence of constant environmental conditions; 
but of course the ergodic theorem no longer applies in this general case. 
For the nonlinear problern, the integral form still exists in some cases, 
and an example will be presented in III. 

5. SIZE-STRUCTURED POPULATIONS, 

AGE-EQUIVALENT REPRESENTATIONS 

AND GENERALIZED ERGODIC THEOREMS 

Age is a variable of minimal physiological significance in fisheries. 
Other variables, size in particular, are more appropriate as building 
blocks of an i-state representation. It is a relatively trivial matter to 
rewrite equation (4) adapted to the case at hand. However, a general 
theory for solving the resulting equation in closed form does not exist. 
We can show by an example what the relevant problems are and what 
pitfalls should be avoided. We choose a length-based model that will be 
examined in more depth in TI. For constant death rate, the dynamical 
equation that we read from (4) is: 

a a57in( l; t) + 1-(g(l; xnl; t)) = -y~;t). (13) 

Here g denotes the right hand side of the differential equation for fish 
growth: 

dld= g(l;x), 
(14) 

where x is a collective name for parameters which describe the (possibly 
variable) state of the environment. The precise form of g, whether it 
corresponds to von Bertalanffy's law or otherwise, need not concern us 
here. 

Now, the birth rate 's not the same as the frequency distribution of 
length at birth (as should be clear from dimensional considerations). 
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Assuming that all individuals have the same length at birth, the correct 
boundary condition which replaces the first equality in (7) is: 

b(t; .x) = n(lb; t)g(1; x) (15) 

with b of the form f 13(1; x)n(l; t) dl. 
The main theoretical question relative to a physiologically structured 

model is whether there exists an age-equivalent representation. A neces
sary condition for that, which turns out to be sufficient in most practical 
cases, is the 

"Principle of natal democracy": all individuals are born equal. 

(In other words, lb is the same for all fish under consideration.) 
Let us write, as an example, the age-equivalent representation for the 

system described by (13) and (15). We suppose for the time being that 
Whe environment is constant. The idea is to attack (13) by integrating 
ii. along toe characteristics, in other words, by integrating the ordinary 
differential equation (14). Suppose that g > 0 always, and that the solu
tion of (14) is given by 1 = L(a) (the parameter along the characteristics 
is Just age); here lb = L(0). Using this expression, we can perform a 
change of variables from I to a in (13) and we get a similar equation for 
the age distribution m(a; t): 

Om Om 
+ C?O-t "5a = _rY(6 M OM(16) 

with the birth rate b(t) = fo""" /(L(a))m(a; t) da. 
Ther it is possible to go to the integral representation of the age

equivalent problem (16) and the ergodic theorem applies. Retracing 
our steps, we obtain the generalized ergodic theorem that we will use 
in II: the solutions of the linear problem (13) with suitable bouxidary 
conditions given by (15) tend asymptotically to an exponentially growing 
or decaying solution, with a stationary relative frequency distribution in 
the length variable. 

For a form of von Berralanffy growth depending on the feeding rate, 
this distribution is exhibited in II in full detail. 

So we have generally three representations for the p-state dynamics of 
a physiologically structured model: the original form which comes from 
(4), the representation derived from integration along the characteristics 
of (4), and the integral form given at the end of §4. If "natal democracy" 
does not apply, we can still distinguish cohorts of individuals born with 
different i-states xb, and then go over to an integral equation for the 
birth rate. So, although we can no lo,.iger speak of an age-equivalent 
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representation, we have in any case three forms of the dynamics, among
which we may choose according to their ease of use in various applica
tions [17]. 

Also, if the environment is no longer constant, equation (16) is not 
enough to describe the dynamics, as the characteristics of (13) change 
over time. But this is easily fixed by introducing a supplementary equa
tion to (16): 

81 c_.1
 
0--/+ Ta = g(1: x) (17)
 

which will update g as needed. 

6. WEAK i-STATES 

The conceptual framework laid down in §2 does not really demand the 
rigid determinism we have adhered to so far. Provided we are prepared 
to accept an interpretation of p-states as mere probability distributions, 
we can allow stochastic "motions" at the i-state level and work out the 
corresponding flux (p. Nor is one committed to Markcv diffusion pro
cesses, contrary to what is asserted in [2, III B]. 

We can roughly distinguish among "internal" and "external" stochas
ticity, depending on whether we consider the variables of the system or 
the input as the random variables. In some sense the latter is more 
fundamental, as we can think of the former as a superposition of deter
ministic problems of the kind we have already faced. 

§7. A VORD ON MATHEMATICS 

We believe that the foregoing sections show that one need not be a 
mathematician to formulate and to deal with physiologically sti.ctured 
population models. What matters most here is an abstract pattern of 
reasoning: going from a picture of the i-behaviour, by good use of the 
fluid dynamics analogy (some prefer a conveyor belt analogy) to the 
p-state dynamics. 

Underneath there is of course a deep mathematical theory, namely, 
the theory ,)f semigroups in Banach spaces: a fine exposition is to be 
found in [18]. Works like [12] make heavy use of it. In fact we can see 
the evolution of n as the result of applying a semigroup of operators 
on an infinite-dimensional Banach space to the "initial condition" no; 
the differential "generator" of that semigroup is specified by our biologi
cal assumptions; and it often happens that mathematical difficuities in 
determining conditions for existence and uniqueness of the solutions of 
our equation-the main concern of mathematicians-turn out to hinge 
on hidden compatibility conditions. Also, the satisfactory solution of 
subtle paradoxes like that of Aldenberg (II, §6) demands the use of 
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tools of operator theory. The renewal ergodic theorem is in fact a result 
of spectral theory in the infinite-dimensional context. 

However, in order to fruitfully manipulate formulas, these questions 
are not usually a problem as long as we are able to develop the necessary
"common sense". And so, we can safely leave them to mathematicians, 
for whom the theory of physiologically structured models is already prov
ing an attractive hunting ground. 
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1. USE AND ABUSE OF MODELS 
The conventional wisdom in fish stock assessment is to keep separate, 

up to a point, the stock-recruitment relationship aspect and the pro
duction a;pect. It is only sensible not to mingle excessively a relatively 
reliable model with a highly doubtful one, provided that doing so does 
not strain reality too much. Sometimes, in practice, this is tantamount 
to using constant recruitment as an input for the production model. 
Still, total yields may be predicted if average recruitment and equilibri
um yield per recruit are susceptible of calculation. There are also many 
models which do mix production and recruitment, but in a completely 
ad hoc way. 

When addressing the problem of tropical fisheries, this conventional 
wisdom runs aground. For one thing, many tropical fish spawn continu
ously in time. Concepts and methods like yield per recruit and following 
of the cohorts through time become difficult to grasp. 

The purpose of this series of papers is precisely to test the usefulness 
of (physiologically) structured models for gaining understanding about 
the dynamics of tropical fisheries. This kind of models is well suited for 
continuously spawning populations. 

This does not mean that we intend to incorporate structured mod
els for biological sector calculations in fisheries management modules 
as a mattey of course. We want to keep things as simple as possible. 
It has been pointed out, in a somewhat different context, that simple 
stock-production models give results which are no worse than structured 
models,for instance for calculating optimum fishing effort [1]. 

One obvious reason for that is the difficulty of parameter estimation 
in the more elaborate model. We will show later how some of the pa
rameter indeterminacy may be removed. At any rate, we believe that 
simple production models, having number or biomass as the sole vari
able, should be used as long as it is feasible. Of course a "biological 
realist" would argue that the same biomass consisting of juvenile fish or 
of mature adults will show very different growth and reproduction pat
terns. For a deeper reason, however, this is almost irrelevant in usual 
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circumstances. The population-dynamics process is a highly redundant 
self-stabilizing one [2]. Suppose you have a fish population in a pond
and you reduce drastically the food supply. You will get stunted fish 
and for a while a highly transient mode will occur, such as to need a 
structured population model to be followed in some detail. But sooner 
or later the population will stabilize itself at a lower level: fish will tend 
to regain their usual weight and number will be as good an indicator as 
it had always been [3]. 

Our strategy is then to use structured models as ancillary to the build
ing of (hopefully) simple production models. 

It is only too easy, in this latter kind, to introduce equations and pa
rameters devoid oi physical underpinning. Throughout the construction 
of structured models we force ourselves to think rigorously about the 
problem at hand, to take account of biological interactions, to uncover 
paradoxes, and so on. 

Formulating the state space dynamics is, as we will see, a healthy 
way to bring out into the open the hidden assumptions and to eliminate 
(or to alleviate at least) the inconsistencies in the conception of the 
vital mechanism one is trying to represent. This process of formulation, 
understanding and simplification underlines our basic line of approach. 

Now there follows the usual preview. For this paper we will focus on: 
a) A derivation of the Ricker stock-recruitment relationship from first 

principles (§2). 
b) The basic model for length-structured, continuous-time dynamics 

(§§3-5). 
c) An example of a general procedure to calculate production, incor

porating more precise physiological information (§6). 
d) Outlook (§7). 

2. RICKER'S FORMULA AND CANNIBALISM 

Now we set out to work out a concrete example in some detail, in 
order to illustrate the program outlined in §1. 

One of the factors that make for the difference between birth rate 
and actual recruitment rate is, of course, predation at an early stage
of the life cycle. We are going now to examine an idealized model of 
this phenomenon and use it to derive the well-known relationship of 
Ricker [4]. 

Let us write the dynamical equations for the prey in the age-structured 
format: 

On(a, t) On(a, t)Ot- + = -p(a,t)n(a,t). (1) 
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Here n(a, t) is the density of population per class of age and It is the 
mortality rate, as usual. 

Assuming a Lotka-Volterra-type interaction, we have 

M(a, t) = -y(a)p(t) (2) 

where -y(a) is the age-specific mortality coefficient and p(t) is the density 
of predators. 

The vulnerability of the prey is thought to differ from zero only for 
0 < a < c, with e small. Our idealization consists in letting c go to zero, 
without changing the global intensity of predation 0 (defined below). 
This is appropriate for egg-eating cannibals, and it is neai also in that it 
avoids the introduction of a multiplicity of parameters. In mathemati
cally pedantir terms, we choose for - a 6-convergent net. We can avoid 
the use of 6-function arguments by passing to the limit carefully. We set 

-1(a) = ) (3) 

where ((x) = 0 unless 0 < x < 1. 
We denote 0 := f 1 ((r) dr = fo y(a) da, the intensity of predation. 
Suppose now that we follow a "cohort" of neonates submitted to the 

mortality givcn by (2) and (3): 

n(a, t) = b(t - a) exp (- j' ( /-)p(t - a + a) da). 

Here b(t) is the birth rate, as usual. Taking limits for c 1 0 and a 1 0 (in 
that order!) we get 

n(0+,t) = b(t)6 
0 P). (4) 

This is a most important formula: it gives the recruitment (survival) 
rate as modified by early predation. It is amazing how the first pro
ponents of models of newborn predation [5,6] failed to derive such a 
relationship. They simply wrote down a rate of prey disappearance of 
the form b(t)p(t). Small wonder that sometimes recruitment becomes 
negative. Small wonder also that they found a destabilizing effect of 
this kind of predation, when nature and more serious models [7] point 
in the opposite direction (the mistake found its way into the textbooks: 
see [8]). 

Now, suppose that we have cannibalism, so the predators are the 
adults themselves. Suppose further that we are in a stationary age 
distribution, so b(t) and p(t) are proportional to the total number of fish 
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N(t). If reproduction occurs in a single "pulse", the adult population 
has no time to age nor to die in the meanwhile. Then we get the following 
stock-recruitment relationship: 

AN = aNe- N (5) 

This is the first mathematical deduction of the Ricker formula that we 
are aware of. It has been pointed out by Ricker himself [4, p. 281] that 
it works well for cannibalistic species; but heterofore the link was not 
formally establshed. (Cannibalism is perhaps not the only mechanism 
which produces a Ricker-style curve; scramble competitic.n could yield 
the same result.) 

In conclusion, a simple production model (at the stock-recruitment 
level in this case) has been justified by a calculation that takes place 
in the realm of structured population models. That occurrence will be 
characteristic of our approach. 

A word of caution: Equation (5) cannot be used in a simple-minded 
way for continuously spawning stocks. 

Equation (4) does not tell us the whole story. There is a consistency 
condition to bue met. Going back to (2), we see that the number of prey 
eat,-n by predator per unit of time is 

c(t) = j 7(a)n(at)da. (6) 

Let us study the limit of (6) when e 1.0 by using (4) and (3) again: 

c(t) = j ((a)b(t - a) exp (- j ((r)p(t  co - er) dr) da; 

limc(t) = b(t) ((a)exp -p(t) (r) d da
elo Jo o/ 

=-bjexp p(t) (r) d --= (( - P()). 

Indeed the right hand side equals decline in population density, at time t, 
per unit of time, due to early predation, divided by the predator density. 

The dynamics of a cannibalistic population becomes automatically 
nonlinear. If the effective number of predators is 

p(t) = k(a)n(a,t)da 
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where k(a) is the age-specific propensity to cannibalism, we get from (1), 
instead of the usual linear Volterra integral equation for b(t), the follow
ing nonlinear system of Volterra equations: 

b(t) = b(t - a)/(a)e- Op(t a) exp - v(a') da' da,fo0 


(7) 
-pM = j b(t - a)k(a)e- p(1 a) exp (- v(a') da' )a. 

In both formulae, v(a) represents a "natural" mortality rate that we 
have to add at the right hand side of (1) and #(a) is the "maternity 
function". 

We will not pursue the matter further here because equations (7),
being based on age, are not easily amenable to include the positive 
effects of young consumption on growth and fecundity of adults. 

Cannibalism may happen between the juveniles themselves and then 
the positive effects just mentioned may become very important. This 
seems to be the case for tuna [9]. We shall deal with this subject below. 

3. LENGTH INSTEAD OF AGE 

We will be using length-based models or weight-based models, which 
are almost (but not quite) equivalent. The use of this kind of models, 
instead of the good old age-structured models borrowed from demogra
phy, may surprise some. But fishes are not endothermic animals whose 
internal enviionment is so stabilized that ageing and development are 
mainly determined by inner gauges and clocks. In cold-blooded animals, 
as in many plants, development is poorly correlated with calendar age 
and external environmental conditions are all-important. Perhaps more 
to the point, statistical data on tropical fisheries are given in terms of 
length; indeed, fishing gear operates with respect to length. There is at 
present no cheap or reliable way to measure age, indeed this is one of 
the objectives of the CRSP. The more subtle reason is that, as we shall 
ve.ify in the next section, length-structured models are more informative 
that age-structured models. 

4. THE VON BERTALANFFY EQUATION REVISITED 

According to the philosophy explained in I, before we set out to sys
tematically introduce our length (weight) based models, we have to look 
at the life history of the individuals. 

1. Food intake. The ingestion of food by an individual fish of length I 
l3and weight w (w = in suitable units) at food density x may be taken 

as 
f(x)I2 = f(X)W2/3 
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where 

" xX-00o x-0f(x) = a + x so f(X) 1 6, f(x) ~ a 

This form for f is Holling's formula [10], which is based on satiation and 
handling time considerations and is empirically well established. The 12 
dependence above is due to the fact that digestion rate scales with the 
surface area of the digestive apparatus. 

2. Growth. Part of the energy from the ingested food is channelled 
into maintenance, part is channelled into growth. So we have, assuming 
isometric growth: 

dw I 213dt -_(f(X)w - Aw) (8)
dt 77 

where q is an efficiency conversion factor of food units into weight units, 
and A is a maintenance parameter. Assuming that the right hand side 
is positive, we would get 

dl dl dw
 
dt dw dt
 

-2/3 (f(x)w 2/ 3 - Aw)= .(f(x) - Al) =: g(l; x) > 0.
377 377 

Let us call lb the length at the time of birth, to: 

1(to) = lb. 

If food conditions remain invariable during the fish lifetime, we get 

1 = L.(x) + (lb - Loo(x))e - k(t - to) (9) 

where k = A/377, Lw = f(x)/A. This is the celebrated von Bertalanffy 
equation. Note that the maximum length depends on the availability of 
food. 

3. Reproduction. So far we have left reproduction out of account. Re
production drains a lot of energy from the parents (think of the salmon!) 
and that has to be reflected somehow in the growth function g. 

The usual solution [10] is to say that a constant fraction of the food 
intake, (1 - tC)f(x)w 213 , with 0 < tz < 1, is channelled into reproduction. 
This way, we have the same equation (9), where Lo(x) = f(x)/3kl is 
replaced by 

Loo.(x) =Kf(x) 
3k77 (10) 

24 



There being no observed change in the feeding rate, nor a noticeable 
deviation from the law of growth at the onset of the maturity, we will 
assume that equation (9), with L,, given by (10), is valid for the entire 
lifetime of the fish, under constant environmental conditions. Presum
ably, the (1 -K)f(x)/3kp,portion of the energy intake serves the building 
of the reproductive apparatus. 

There are some paradoxes involved here, that will be taken up par
tially in §6. For the time being, our sticking to this particular version of 
von Bertalanffy's law rewards us with a precisely determined form for 
the length-specific maternity function /3(; x). Let im be the length at 
which the Lsh mature (we are here considering models in which matu
rity happens in a "knife-edge" way, rather than fuzzily, a questionable 
assumption, to be sure). We have 

30 ifl b 1<1m
 
3((1 - K)f(x)1 2 if 1m < 1 5 L0 0 (x). 

Here Wb is the weight of a newborn and we are supposing that food 
supply is enough for reproduction to start. Note that Diekmann and 
Metz [10] write (ww )-'(1 - K)f(x)l 2 for the lnst part of the equation; 
but there is no good reason for taking c.,, ;/. 

5.THE BASIC MODEL (CONSTANT ENVIRONMENT) 

The dynamical equation is: 

an(l,t)+-(g(l; x)n(l, t)) = -jn(l,t'. (12) 
at a l 

We shall take the mortality rate p to be constant. It is proven in I 
that the solution of this equation tends asymptotically to a stationary 
length distributior:, with exponential growth or decay. Let us find this 
distribution. We insert n(l,t) = (I)ert in (12) and we find 

-
V,(l) = C(i - ko) 

that is: 

0(1) = (/b) (Lo----_-)o (13) 

In this and subsequent formulae it is tempting to take lb = 0, given the 
fact that length at birth is very small anyway. It will be seen later that 
this would be a mistake. 
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Figure 1. Graph of 7r(s; x) 

To get r, still unknown, we use the boundary condition:
 

b(t;x) = g(lb;x)n(lb,t), where
 

b(t; X) := J /(1;x)n(l, t) dl.
 

Inserting n(l, t) = (1)erl in the appropriate places again, we obtain 

3(1 - x)f(x) L-(x)7r(rx) := AWb(Loo(x) - lb)(A+r)/k J, 
2 (L ()x - ) dl - 1 

(14)
This is to say, r solves the "characteristic equation" 7r(s, x) = 1 with the 
functional form of 7r given by the expression above. This function may 
be given a more explicit form by integrating (14): 

7r(sx) - 3k(1 - A 41A)f(x) 

Awb (/ + s 

2L°°(x)(L.(x) - Ib) 1+km + (L.(x) - lb) 2 A (15) 

s+ k s 1 +2k+s 

where 

A Loo Im
 
L.-lb
 

The result is valid if s > -y. Moreover, 7r(s; x) is a strictly decreasing 
and convex function of s, and lim,-. 7r(s; x) = 0. Then the equation 
7r(s; x) = 1 has a unique simple solution, which furthermore may be 
approximated easily by Newton's method. Have a look at Figure 1. 
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We have: 
r :< 0 4=> 7(0; x) ?< 1 (16) 

That will be readily interpreted in biological terms. Let y be defined 
by Loo(y) = Im. Then clearly lim._, r(s; x) = 0 if s > -p and then 
r -+ -yu. Thus there is a critical food density defined by r(O; x,) = 1, 
such that -ji < r < 0 if x < xc and C < r < r,, if x < xc, where r,,, is 
the solution of 7r(s; +oo) = 1. 

There is an alternative way of solving (12), by introducing the growth 
curve (9). Note that the age of the fish is given by 

a(l) = 1In (L.-lb) (17) 

Changing the variables in (14), we are led to 

-3(1 - )f(x) 0 12 (a)e (p + r)a da, (18) 

WbA Jam 

where an is the age of maturity. It is clear now that the right hand 
side of the equation is essentially a birth rate: 7r(0; x) is the number of 
offspring that a newborn individual is expected to bear. 

It is also possible to interpret the characteristicequation (14) in terms 
of sustainableyields: if the harvesting rate equals precisely the natural 
rate of growth, the population size should remain constant. Then 7r(s; x) 
is the expected number of offspring per individual if we harvest the 
population at the rate s. 

6. ALDENBERG'S PARADOX AND PRODUCTION RATE 

There is a paradox noticed by Aldenberg [11] implicit in models that 
use a continuous growth curve. The sudden appearance of neonates 
should be accompanied by a negative .:imp in mean individual weight 
of the parent cohort: every reproduction is a fission. What we did, 
tacitly, with our early assumption, was to assume that reproduction 
proceeded by all individuals in the population contributing continuously 
infinitesimal shares to a common pool, from which, by some miracle, 
neonates were produced. 

The question is important for production theory, because it is easy 
to see that classical (Allen's and Ricker's) production models, which do 
not take into account the foregoing, tend to overestimate production. 

Let us write now the "correct" equation, replacing length by weight 
as the independent variable: 

On a(gn)

'- + w pn - /n + /J(w + Wb)n(w + wb). (19)
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This should be compared to equation (12). 
If we are not willing to forsake equation (12), we have to look for a 

way out of the paradox. 
One possibility is to derive a limiting form of equation (19) when 

Wb *- 0. By a Taylor development we readily arrive at equation (12), 
with g replaced by g - 8, which we define as /3(w) = limWb-.o fl(W)Wb. 
This is most reasonable: the energy sabstracted from growth is chanelled 
into reproduction. As we took this into account when we wrote down our 
growth curve, we might think that we are on safe ground. However, it is 
clear that in the limit Wb -. 0, the number of neonates becomes infinite. 
TLis is one of the reasons that prevented us from putting Wb = 0 in §4 
(another reason will be apparent in §7). This "population explosion" 
could be countered by an infinite mortality, but this is too artificial. 

More to the point is the following result: the rate of production in the 
models governed by (19) is the same as that in the models governed by 
(12), provided that g is adequately corrected. 
PROOF: Multiplying equation (12) by w and integrating, we get 

fw f w-n)cl n fW00 dB
b w g dw= w-dw + wyndw= -+ E. 

dtb Ow b t b 


Here B(t) = fw° wn(w,t)dw is the population biomass and the term 
E stands for the rate of biomass elimination through mortality. We 
conclude that the rate of net biomass production is 

S(gn) dw. (20) 

(Now it is a simple exercise to calculate the rate of production of biomass 
per unit stock, assuming stationary distribution of weight, using g(w)
given by (8) and also formula (13). The measured "snapshot" of number 
over weight distribution should serve for estimating the paramecers in 
these formulae). 

Let us continue the proof. Integrating by parts, we get 

P wbg(wb)n(wb, t) + gn dw (21) 

which dist;nguishes clearly the formation of rerroductive material from 
the individual's growth. 

We turn nov, to Aldenberg's equation. The rate of production is now 

L= 0 dw - wfln dw 

+ Lb w/3(w + wb)n(w + Wb, t) dw. 
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As P3 = 0 for w < 2wb, the second term on the right can be written as 
-f 2w w3n dw, whereas the third term is f 2.(w- wb)fl(w)n(w, t) dw, 
so they add up to -Wb f2 On dw. 

We get, finally: 

wbg(Wb)n(Wb,Wbg(b )n(W f) / - (22)P + J,) (g wbg)n dw 

which is (21), provided that we redefine g suitably. We conclude that, 
from the practical point of view, equation (12) is safe to stick to. I 

7. INTERACTIONS 

There follows a list of problems that could be readily handled with 
the tools developed so far. 

Of course, the hypothesis of constant environment is not fulfilled in 
practice. We are interested precisely in harvesting populations which 
keep dynamical equilibria with their surroundings. Part of our purpose
is to look for these equilibria for different realistic assumptions about 
recruitment, development and reproduction processes. 

a. Competition for food resources. We intend to attack equation (12) 
coupled to the equation for the resource: 

dx t lJ- = k(x) - f(x) 1n(tt)dl. 

Here we expect that k(x) > 0 for 0 < x < xe and k(x) < 0 for x > xe: 
we may suppose that k(x) = a -- Ox at least in the vicinity of xe. 

Here time-scale arguments must be employed to simplify the problem: 
it is reasonable to assume that the relaxation time of the resource is much 
shorter than that of the population under study, so we can treat the 
(slow) population variables as constants on the time-scale of the (fast) 
resource variables and the resource variables as being permanently in 
equilibrium in the scale of the population vailatbles. 

b. For different harvesting rates, we obtain different equilibria in (a). 
We calculate then the production rate (20), in order to deduce sustain
able yields. 

c. Intrajuvenile cannibalism. Let us suppose that the coincidence be
tween the vulnerable and cannibalistic classes is exact. We sketch a 
simple model based on age. Reasoning as in §2, we have: 

n(O+, t) = b(t)COP(t) 
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where p(t) is defined as fo y(a)n(a, t) da before going to the limit.
 
Now we have a consistency condition:
 

p(t) = b(!l -t) P" 

which may be solved to give p in terms of b. Then we write the renewal 
equation: 

-b fj 3(a)n(a) da = j i(a)n(O+)e va da 

j= 0(a)be-Op(b)e-va da (23) 

which, interestingly enough, turns out to be nonlinear. We can examine 
the dynamical properties of (23) and then attack the same problem with 
length basedi models, where one may follow the energy budgets, in order 
to compare results. We think that a justification for the use of the 
logistic model might emerge from this. 

It is interesting to note that competition for safe places "i the early 
life stage turns out to be mathematically equivalent. 

d. There is evidently an energetic tradeoff between birth weight and 
birth rate. From evolutionary considerations, the precise relation should 
be obtained by ma:imizing r (with respect to ?ub). The resulting rela
tionship could be tested empirically and eventually lead to elimination 
of some parameters of the model (now we see again that putting wb = 0 
is not really such a good idea). From evolutionary considerations also, 
the negative correlation between L,, and k alluded to in [12] may find 
an illuminating explanation. 

e. One might try to apply Laplace transform methods to Aldenberg's 
equation, looking for asymptotically stationary solutions. 

f. A richer model can be developed, introducing storage of reserves as a 
second dependent variable, and allowing for stochastic variation of the 
environment. 

We also note that the formalism lends itself to the study of chemical 
stresses caused by pollution. 
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